Аэродинамическое сопротивление воздуховодов таблица. порядок аэродинамического расчета механических систем вентиляции

Расчет воздуховодов вентиляции

При устройстве системы вентиляции важно правильно подобрать и определить параметры всех элементов системы. Необходимо найти требуемое количество воздуха, подобрать оборудование, рассчитать воздуховоды, фасонные элементы и другие комплектующие вентиляционной сети. Как проводится расчет воздуховодов вентиляции? Что влияет на их размер и сечение? Разберем этот вопрос подробнее

Как проводится расчет воздуховодов вентиляции? Что влияет на их размер и сечение? Разберем этот вопрос подробнее.

Воздуховоды необходимо рассчитывать с двух точек зрения. Во-первых, подбирается необходимое сечение и форма. При этом необходимо учитывать количество воздуха и другие параметры сети. Также уже при изготовлении рассчитывается количество материала, например, жести, для изготовления труб и фасонных элементов. Такой расчет площади воздуховодов позволяет заранее определить количество и стоимость материала.

Типы воздуховодов

Для начала пару слов скажем и материалах и типах воздуховодов

Это важно из-за того, что в зависимости от формы воздуховодов существуют особенности его расчета и выбора площади поперечного сечения. Также важно ориентироваться и на материал, так как от него зависит особенности движения воздуха и взаимодействие потока со стенками. Если коротко, то воздуховоды бывают:

Если коротко, то воздуховоды бывают:

  • Металлические из оцинкованной или черной стали, нержавейки.
  • Гибкие из алюминиевой или пластиковой пленки.
  • Жесткие пластиковые.
  • Тканевые.

По форме воздуховоды изготовливаются круглого сечения, прямоугольного и овального. Наиболее часто используются круглые и прямоугольные трубы.

Большая часть из описанных воздуховодов изготовливаются в заводских условиях, например, гибкие из пластика или тканевые, и изготовить их на объекте или в небольшой мастерской сложно. Большая часть изделий, которым требуется расчет, производят из оцинкованной стали или нержавейки.

Из оцинкованной стали изготовляются как прямоугольные, так и круглые воздуховоды, причем для производства не требуется особо дорогостоящее оборудование. В большинстве случаев достаточно гибочного станка и устройства для изготовления круглых труб. Не считая мелкого ручного инструмента.

Расчет поперечного сечения воздуховода

Основная задача, которая возникает при расчете воздуховодов – это выбор поперечного сечения и формы изделия. Этот процесс проходит при проектировании системы как в специализированных компаниях, так и при самостоятельном изготовлении. Необходимо провести расчет диаметра воздуховода или сторон прямоугольника, выбрать оптимальное значение площади поперечного сечения.

Расчет поперечного сечения проводят двумя способами:

  • допустимых скоростей;
  • постоянной потери давления.

Метод допустимых скоростей проще для неспециалистов, поэтому рассмотрим в общих чертах его.

Расчет сечения воздуховодов методом допустимых скоростей

Расчет сечения воздуховода вентиляции методом допустимых скоростей базируется на нормированной максимальной скорости. Скорость выбирается для каждого типа помещения и участка воздуховода в зависимости от рекомендуемых значений. Для каждого типа здания существуют максимально допустимые скорости в магистральных воздуховодах и ответвлениях, выше которых использование системы затруднено из-за шума и сильных потерь давления.

Рис. 1 (Схема сети для расчета)

В любом случае, перед началом расчета необходимо составить план системы. Для начала необходимо рассчитать требуемое количество воздуха, которое нужно подать и удалить из помещения. На этом расчете будет базироваться дальнейшая работа.

Сам процесс расчета сечения методом допустимых скоростей упрощенно состоит из таких этапов:

  1. Создается схема воздуховодов, на которой отмечаются участки и расчетное количество воздуха, которое будет по ним транспортироваться. Лучше на ней же указать все решетки, диффузоры, изменения сечения, повороты и клапаны.
  2. По подобранной максимальной скорости и количеству воздуха рассчитывается сечение воздуховода, его диаметр или размер сторон прямоугольника.
  3. После того, как известны все параметры системы, можно подобрать вентилятор необходимой производительности и напора. Подбор вентилятора базируется на расчете падения давления в сети. Это существенно сложнее, чем просто подобрать сечение воздуховода на каждом участке. Этот вопрос мы рассмотрим в общих чертах. Так как иногда просто подбирают вентилятор с небольшим запасом.

Для расчета необходимо знать параметры максимальной скорости воздуха. Их берут из справочников и нормативной литературы. В таблице приведены значения для некоторых зданий и участков системы.

Расчет воздуховодов приточных и вытяжных систем механической и естественной вентиляции

Аэродинамический расчет воздуховодов обычно сводится к определению размеров их поперечного сечения, а также потерь давления на отдельных участках и в системе в целом. Можно определять расходы воздуха при заданных размерах воздуховодов и известном перепаде давления в системе.

При аэродинамическом расчете воздуховодов систем вентиляции обычно пренебрегают сжимаемостью перемещающегося воздуха и пользуются значениями избыточных давлений, принимая за условный нуль атмосферное давление.

При движении воздуха по воздуховоду в любом поперечном сечении потока различают три вида давления:статическое, динамическое и полное.

Статическое давление определяет потенциальную энергию 1 м3 воздуха в рассматриваемом сечении (рст равно давлению на стенки воздуховода).

Динамическое давление – это кинетическая энергия потока, отнесенная к 1 м3 воздуха, определяется по формуле:

(1)

где – плотность воздуха, кг/м3; – скорость движения воздуха в сечении, м/с.

Полное давление равно сумме статического и динамического давлений.

(2)

Традиционно при расчете сети воздуховодов применяется термин “потери давления” (“потери энергии потока”).

Потери давления (полные) в системе вентиляции складываются из потерь на трение и потерь в местных сопротивлениях (см.: Отопление и вентиляция, ч. 2.1 “Вентиляция” под ред. В.Н. Богословского, М., 1976).

Потери давления на трение определяются по формуле Дарси:

(3)

где – коэффициент сопротивления трению, который рассчитывается по универсальной формуле А.Д. Альтшуля:

(4)

где – критерий Рейнольдса; К – высота выступов шероховатости (абсолютная шероховатость).При инженерных расчетах потери давления на трение , Па (кг/м2), в воздуховоде длиной /, м, определяются по выражению

(5)

где – потери давления на 1 мм длины воздуховода, Па/м [кг/(м2 * м)].

Для определения Rсоставлены таблицы и номограммы. Номограммы (рис. 1 и 2) построены для условий: форма сечения воздуховода круг диаметром, давление воздуха 98 кПа (1 ат), температура 20°С, шероховатость= 0,1 мм.

Для расчета воздуховодов и каналов прямоугольного сечения пользуются таблицами и номограммами для круглых воздуховодов, вводя при этом эквивалентный диаметр прямоугольного воздуховода, при котором потери давления на трение в круглом и прямоугольном ~ воздуховодахравны.

В практике проектирования получили распространение три вида эквивалентных диаметров:

■ по скорости

при равенстве скоростей

■ по расходу

при равенстве расходов

■ по площади поперечного сечения

при равенстве площадей сечения

При расчете воздуховодов с шероховатостью стенок, отличающейся от предусмотренной в таблицах или в номограммах (К = ОД мм), дают поправку к табличному значению удельных потерь давления на трение:

(6)

где – табличное значение удельных потерь давления на трение; – коэффициент учета шероховатости стенок (табл. 8.6).

Потери давления в местных сопротивлениях. В местах поворота воздуховода, при делении и слиянии потоков в тройниках, при изменении размеров воздуховода (расширение – в диффузоре, сужение – в конфузоре), при входе в воздуховод или в канал и выходе из него, а также в местах установки регулирующих устройств (дросселей, шиберов, диафрагм) наблюдается падение давления в потоке перемещающегося воздуха. В указанных местах происходит перестройка полей скоростей воздуха в воздуховоде и образование вихревых зон у стенок, что сопровождается потерей энергии потока. Выравнивание потока происходит на некотором расстоянии после прохождения этих мест. Условно, для удобства проведения аэродинамического расчета, потери давления в местных сопротивлениях считают сосредоточенными.

Потери давления в местном сопротивлении определяются по формуле

(7)

где – коэффициент местного сопротивления (обычно, в отдельных случаях имеет место отрицательное значение, при расчетах следует учитывать знак).

Коэффициентотносится к наибольшей скорости в суженном сечении участка или скорости в сечении участка с меньшим расходом (в тройнике). В таблицах коэффициентов местных сопротивлений указано, к какой скорости относится.

Потери давления в местных сопротивлениях участка, z, рассчитываются по формуле

(8)

где

– сумма коэффициентов местных сопротивлений на участке.

Общие потери давления на участке воздуховода длиной, м, при наличии местных сопротивлений:

(9)

где – потери давления на 1 м длины воздуховода;

– потери давления в местных сопротивлениях участка.

Виды воздуховодов


Вентиляционный канал вытяжки прямоугольного сечения Современные воздуховоды можно классифицировать по нескольким параметрам: способ монтажа, материал изготовления, форма сечения.

По монтажу выделяют наружные и встроенные каналы. Первые устанавливаются поверх стен и заметны глазу. Внутренние монтируют в стенах и конструкции дома.

Материал труб может быть разным. Это различные металлы (медь, сталь, алюминий) и пластик. Металлические изделия отличаются своей прочностью и надежностью, но их установка сложнее. Монтировать пластиковые устройства проще, но они не применяются при высоких температурах.

Сечение может быть прямоугольных и круглым. Прямоугольные трубы отличаются универсальностью, но на углах могут создаваться завихрения. Круглые модели не имеют такого недостатка.

Рекомендуемая скорость воздуха в воздуховодах и решетках, м/с

Элемент системы

Механическая вентиляция

Приточные шахты
2,0÷6,0

Горизонтальные сборные каналы
5,0÷11,0

Вертикальные каналы
2,0÷6,0

Приточные решетки у потолка
0,2÷0,3

Приточные решетки у пола
0,2÷0,3

Вытяжные решетки
0,2÷0,3

Вытяжные шахты
1,0÷3,3

Потерю давления при движении воздуха по отдельному участку воздуховода определяют как суму потерь давления на трение и на местных сопротивлениях.

Для круглих стальних воздуховодов удельную потерю давления на трение, т.е. величину R, можно определить в зависимости от расхода воздуха на участке и диаметра воздуховода. Для прямоугольных воздуховодов сначала определяют эквивалентный диаметр.

Затем используют специальную таблицу для определения удельных потерь давления на трение. Также учитывается шероховатость воздуховодов, потери давления на местных сопротивлениях и динамическое сопротивление.

Площадь сечения воздуховодов, точнее размеры воздуховодов, в процессе аэродинамического расчета приходиться уточнять, то есть изменять в большую или меньшую сторону. При одном и том же расходе воздуха уменьшение сечения приводит к увеличению потерь давления и наоборот, при увеличении сечения для прохода воздуха потери давления уменьшаются.

Сделать вывод о том, что сечения воздуховодов назначены правильно можно только после сравнения потерь давления с располагаемым давлением. При естественной вентиляции располагаемым давлением является гравитационное давление, которое вызывает движение воздуха по воздуховоду. При механической вентиляции – располагаемым давлением есть давление вентилятора.

Таким образом, при аэродинамическом расчете, чтобы назначить сечения воздуховодов и обеспечить удаление или подачу нужного количества воздуха в помещение, необходимо сравнить потери давления с располагаемым. Для сравнения определяют потери давления по главной расчетной магистрали.


При расчете ответвлений исходят из условия, что при движении воздуха по воздуховодам потери давления по параллельных ветках равны между собою.

Чтобы убедится в этом, рассмотрим простейшую схему вытяжных воздуховодов, которые удаляют воздух из жилой квартиры, в частности кухни и санузла.

Схема вытяжных воздуховодов

1,2,3 – отдельные участки аксонометрической схемы;

– расход воздуха на первом, втором и третьем участкам.

Система воздуховодов состоит из трех участков – 1, 2, 3. Главная магистраль (расчетная ветка) включает участки 1 и 2. Ответвления – 3-тий участок.

При движении воздуха по воздуховодам потерю давления на участке 1 можно определить как разность между давлением воздуха в помещении и в точке А, то есть в точке слияния потоков воздуха.

Отсюда следует вывод – при движении воздуха по воздуховодам, потери давления на параллельных участках равны между собой. Если частично закрыть жалюзийную решетку на участке 3, то сопротивление этого участка увеличится, а расход воздуха уменьшится. Одновременно увеличится расход воздуха на участке 1, но равенство потерь давления при параллельных участках сохранится. Таким образом, при расчете воздуховодов, если задан расход воздуха на участке 3, то нужно назначить сечение воздуховода на этом участке так, чтобы выполнять равенство . Если это равенство не выполняется, то при эксплуатации системы вентиляции расходы воздуха на этих участках перераспределятся, и не будут соответствовать расчетным.

Расчет воздуховодов

Расчет воздуховодов или проектирование систем вентиляции

В создании оптимального микроклимата помещений наиболее важную роль играет вентиляция. Именно она в значительной степени обеспечивает уют и гарантирует здоровье находящихся в помещении людей. Созданная система вентиляции позволяет избавиться от множества проблем, возникающих в закрытом помещении: от загрязнения воздуха парами, вредными газами, пылью органического и неорганического происхождения, избыточным теплом. Однако предпосылки хорошей работы вентиляции и качественного воздухообмена закладываются задолго до сдачи объекта в эксплуатацию, а точнее, на стадии создания проекта вентиляции. Производительность систем вентиляции зависит от размеров воздуховодов, мощности вентиляторов, скорости движения воздуха и других параметров будущей магистрали. Для проектирования системы вентиляции необходимо осуществить большое количество инженерных расчетов, которые учтут не только площадь помещения, высоту его перекрытий, но и множество других нюансов.

Расчет площади сечения воздуховодов

После того, как вы определили производительность вентиляции, можно переходить к расчету размеров (площади сечения) воздуховодов.

Расчет площади воздуховодов определяется по данным о необходимом потоке, подаваемом в помещение и по максимально допустимой скорости потока воздуха в канале. Если допустимая скорость потока будет выше нормы, то это приведет к потере давления на местные сопротивления, а также по длине, что повлечет за собой увеличение затрат электроэнергии. Также правильный расчет площади сечения воздуховодов необходим для того, чтобы уровень аэродинамического шума и вибрация не превышали норму.

При расчете нужно учитывать, что если вы выберете большую площадь сечения воздуховода, то скорость воздушного потока снизится, что положительно повлияет и на снижение аэродинамического шума, а также на затраты по электроэнергии. Но нужно знать, что в этом случае стоимость самого воздуховода будет выше. Однако использовать «тихие» низкоскоростные воздуховоды большого сечения не всегда возможно, так как их сложно разместить в запотолочном пространстве. Уменьшить высоту запотолочного пространства позволяет применение прямоугольных воздуховодов, которые при одинаковой площади сечения имеют меньшую высоту, чем круглые (например, круглый воздуховод диаметром 160 мм имеет такую же площадь сечения, как и прямоугольный размером 200×100 мм). В то же время монтировать сеть из круглых гибких воздуховодов проще и быстрее.

Поэтому при выборе воздуховодов обычно подбирают вариант, наиболее подходящий и по удобству монтажа, и по экономической целесообразности.

Площадь сечения воздуховода определяется по формуле:

— расчетная площадь сечения воздуховода, см²;

L — расход воздуха через воздуховод, м³/ч;

V — скорость воздуха в воздуховоде, м/с;

2,778 — коэффициент для согласования различных размерностей (часы и секунды, метры и сантиметры).

Итоговый результат мы получаем в квадратных сантиметрах, поскольку в таких единицах измерения он более удобен для восприятия.

Фактическая площадь сечения воздуховода определяется по формуле:

S = π * D² / 400 — для круглых воздуховодов,

S = A * B / 100 — для прямоугольных воздуховодов, где

S — фактическая площадь сечения воздуховода, см²;

D — диаметр круглого воздуховода, мм;

A и B — ширина и высота прямоугольного воздуховода, мм.

Расчет сопротивления сети воздуховодов

После того как вы рассчитали площадь сечения воздуховодов, необходимо определить потери давления в вентиляционной сети (сопротивление водоотводной сети). При проектировании сети необходимо учесть потери давления в вентиляционном оборудовании. Когда воздух движется по воздуховодной магистрали, он испытывает сопротивление. Для того чтобы преодолеть это сопротивление, вентилятор должен создавать определенное давление, которое измеряется в Паскалях (Па). Для выбора приточной установки нам необходимо рассчитать это сопротивление сети.

Для расчета сопротивления участка сети используется формула:

Где R – удельные потери давления на трение на участках сети

L – длина участка воздуховода (8 м)

Еi – сумма коэффициентов местных потерь на участке воздуховода

V – скорость воздуха на участке воздуховода, (2,8 м/с)

Y – плотность воздуха (принимаем 1,2 кг/м3).

Значения R определяются по справочнику (R – по значению диаметра воздуховода на участке d=560 мм и V=3 м/с). Еi – в зависимости от типа местного сопротивления.

В качестве примера, результаты расчета воздуховода и сопротивления сети приведены в таблице:

Особенности и применение естественной вентиляции

В помещении с металлопластиковыми окнами на них ставят приточные клапаны

Воздух в неорганизованных воздуховодах удаляется с помощью тяги в каналах, расположенных обычно в ванной, туалете и кухне. Тяготение возникает пропорционально разнице температур наружной и внутренней атмосферы и высоте стояка от вентиляционной решетки до оголовка трубы на кровле.

Используются сквозные искусственные каналы и клапаны при недостаточной тяге в вентиляционных шахтах:

  • проветриватель ставят в наружной стене или раме, устройство увеличивает объем воздуха, но его работа также зависит от климата;
  • бризер одновременно очищает и проветривает поступающий воздух с помощью одного или набора фильтров и мембран, монтируется в стене дома;
  • к принудительной циркуляции относится установка вентиляторов в окне или стеновой нише.

Играет роль ветреная погода. Если летом открыть фрамугу, струя под напором выдавит воздух в вытяжную шахту. Ветровая нагрузка может использоваться для работы дефлекторов, которые устанавливаются на оголовок и улучшают тягу за счет поворотов. Естественная вентиляция остается самым дешевым способом проветривания, не требует затрат на монтаж и эксплуатацию.

Основные формулы аэродинамического расчета

Первым делом необходимо сделать аэродинамический расчет магистрали. Напомним что магистральным воздуховодом считается наиболее длинный и нагруженный участок системы. За результатами этих вычислений и подбирается вентилятор. 

Только не забывайте об увязке остальных ветвей системы

Это важно! Если нет возможности произвести увязку на ответвлениях воздуховодов в пределах 10% нужно применять диафрагмы. Коэффициент сопротивления диафрагмы рассчитывается за формулой: 

Если неувязка будет больше 10%, когда горизонтальный воздуховод входит в вертикальный кирпичный канал в месте стыковки  необходимо разместить прямоугольные диафрагмы.

Основная задача расчета состоит из нахождения потерь давления. Подбирая при этом оптимальный размер воздуховодов и контролирую скорость воздуха. Общие потери давления представляют собой сумму двух компонентов — потерь давления по длине воздуховодов (на трение) и потерь в местных сопротивлениях. Расчитываются они по формулам

Эти формулы правильны для стальных воздуховодов, для всех остальных вводится коэффициент поправки. Он берется из таблицы в зависимости от скорости и шероховатости воздуховодов.

Для прямоугольных воздухопроводов расчетной величиной принимается эквивалентный диаметр.

Рассмотрим последовательность аэродинамического расчета воздуховодов на примере офисов, приведенных в предыдущей статье, по формулам. А затем покажем как он выглядит в программке Excel.

Пример расчета

По расчетам в кабинете воздухообмен составляет 800 м3/час. Задание было запроектировать воздуховоды в кабинетах не больше 200 мм высотой.  Размеры помещения даны заказчиком. Воздух подается при температуре 20°С, плотность воздуха 1,2 кг/м3.

Проще будет если результаты заносить в таблицу такого вида

Сначала мы сделаем аэродинамический расчет главной магистрали системы. Теперь все по-порядку:

Разбиваем магистраль на участки по приточным решеткам. У нас в помещении восемь решеток, на каждую приходится по 100 м3/час. Получилось 11 участков. Вводим расход воздуха на каждом участке в таблицу.

  • Записываем длину каждого участка.
  • Рекомендуемая максимальная скорость внутри воздуховода для офисных помещений до 5 м/с. Поэтому подбираем такой размер воздуховода, чтобы скорость увеличивалась по мере приближения к вентиляционному оборудованию и не превышала максимальную. Это делается для избежания шума в вентиляции. Возьмем для первого участка берем воздуховод 150х150, а для последнего 800х250. 

    V1=L/3600F =100/(3600*0,023)=1,23 м/с. 

    V11= 3400/3600*0,2= 4,72 м/с

    Нас результат устраивает. Определяем размеры воздуховодов и скорость по этой формуле на каждом участке и вносим в таблицу.

  • Начинаем расчеты потерь давления. Определяем эквивалентный диаметр для каждого участка, например первого dэ=2*150*150/(150+150)=150.  Затем заполняем все данные необходимые для расчета из справочной литературы или вычисляем: Re=1,23*0,150/(15,11*10^-6)=12210.  λ=0,11(68/12210+0,1/0,15)^0,25=0,0996 Шероховатость разных материалов разная.
  • Динамическое давление Pд=1,2*1,23*1,23/2=0,9 Па тоже записывается в столбец.
  • Из таблицы 2.22 определяем удельные потери давления или рассчитываем R=Pд*λ/d= 0,9*0,0996/0,15=0,6 Па/м  и заносим в столбик. Затем на каждом участке определяем потери давления на трение: ΔРтр=R*l*n=0,6*2*1=1,2 Па.
  • Коэффициенты местных сопротивлений берем из справочной литературы. На первом участке у нас решетка и увеличение воздуховода в сумме их КМС составляет 1,5.
  • Потери давления в местных сопротивлениях ΔРм=1,5*0,9=1.35 Па
  • Находим суму потерь давления на каждом участке = 1.35+1.2=2,6 Па. А в итоге и потери давления во всей магистрали = 185,6 Па. таблица к тому времени будет иметь вид

Далее производится по тому же методу расчет остальных ветвей и их увязка. Но об этом поговорим отдельно.

Расчет нормального воздухообмена для эффективной вентиляции квартиры или дома

Итак, при нормальной работе вентиляции в течение часа воздух в помещениях должен постоянно меняться. Действующими руководящими документами (СНиП и СанПиН) установлены нормы притока свежего воздуха в каждое из помещений жилой зоны квартиры, а также минимальные объемы его вытяжки через каналы, расположенные на кухне, в ванной в санузле, иногда – и в некоторых других специальных помещениях.

Эти нормативы, опубликованные в нескольких документах, для удобства читателя объединены в одну таблицу, показанную ниже:

Тип помещения Минимальные нормы воздухообмена (кратность в час или кубометров в час)
ПРИТОК ВЫТЯЖКА
Требования по Своду Правил СП 55.13330.2011 к СНиП 31-02-2001 «Одноквартирные жилые дома»
Жилые помещения с постоянным пребыванием людей Не менее однократного обмена объема в течение часа
Кухня 60 м³/час
Ванная, туалет 25 м³/час
Остальные помещения Не менее 0,2 объема в течение часа
Требования по Своду Правил СП 60.13330.2012 к СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование воздуха»
Минимальный расход наружного воздуха на одного человека: жилые помещения с постоянным пребыванием людей, в условиях естественного проветривания:
При общей жилой площади более 20 м² на человека 30 м³/час, но при этом не менее 0,35 от общего объема воздухообмена квартиры в час
При общей жилой площади менее 20 м² на человека 3 м³/час на каждый 1 м² площади помещения
Требования по Своду Правил СП 54.13330.2011 к СНиП 31-01-2003 «Здания жилые многоквартирные»
Спальная, детская, гостиная Однократный обмен объема в час
Кабинет, библиотека 0,5 от объема в час
Бельевая, кладовка, гардеробная 0,2 от объема в час
Домашний спортзал, биллиардная 80 м³/час
Кухня с электрической плитой 60 м³/час
Помещения с газовым оборудованием Однократный обмен + 100 м³/час на газовую плиту
Помещение с твёрдотопливным котлом или печью Однократный обмен + 100 м³/час на котел или печь
Домашняя прачечная, сушилка, гладильная 90 м³/час
Душевая, ванная, туалет или совмещенный санузел 25 м³/час
Домашняя сауна 10 м³/час на каждого человека

Пытливый читатель наверняка заметит, что нормативы по разным документам несколько отличаются. Причем, в одном случае нормы устанавливаются исключительно по размерам (объему) помещения, а другом – по количеству людей постоянно пребывающих в этом помещении. (Под понятием постоянного пребывания имеется в виду нахождение в комнате 2 часа и более).

Поэтому при проведении расчетов вычисления минимального объема воздухообмена желательно проводить по всем доступным нормативам. А затем – выбрать результат с максимальным показателем – тогда ошибки точно не будет.

Провести быстро и точно расчет притока воздуха для всех помещений квартиры или дома поможет первый предлагаемый калькулятор.

Калькулятор расчета требуемых объемов притока воздуха для нормальной вентиляции

Как видите, калькулятор позволяет провести вычисления и от объёмов помещений, и от количества постоянно пребывающих в них людей. Повторимся, желательно провести оба расчета, а затем выбрать из двух получившихся результатов, если они будут различаться, максимальный.

Проще будет действовать, если заранее составить небольшую таблицу, в которой перечислены все помещения квартиры или дома. А затем в нее вносить полученные значения притока воздуха – для комнат жилой зоны, и вытяжки – для помещений, где предусмотрены вытяжные вентиляционные каналы.

К примеру, это может выглядеть так:

Помещение и его площадь Нормы притока   Нормы вытяжки  
1 способ – по объему комнаты 2 способ – по количеству людей 1 способ 2 способ
Гостиная, 18 м² 50
Спальная, 14 м² 39
Детская, 15 м² 42
Кабинет, 10 м² 14
Кухня с газовой плитой, 9 м² 60
Санузел
Ванная
Гардероб-кладовая, 4 м²
Суммарное значение 177
Принимаемое общее значение воздухообмена

Затем суммируются максимальные значения (они в таблице для наглядности выделены подчёркиванием), отдельно для притока и для вытяжки воздуха. А так как при работе вентиляции должно соблюдаться равновесие, то есть сколько воздуха в единицу времени поступило в помещения – столько же должно и выйти, итоговым выбирается также максимальное значение из полученных двух суммарных. В приведенном примере – это 240 м³/час.

Этот значение и должно быть показателем суммарной производительности вентиляции в доме или квартире.

Методика расчёта

Самый распространенный вариант, когда оба параметра — сила напора и площадь сечения — неизвестны. В этом случае каждый из них определяется отдельно, с применением своих формул.

Скорость

Она необходима для получения параметров динамического давления на проектируемом участке. Надо помнить, что расход воздуха известен заранее, причем, не для всей системы, а для каждого участка. Измеряется в м/с.

υ фак = L/(3600×Fф), где

L — расход воздуха на исследуемом участке, м3/ч

Давление

Вентиляционная система делится на отдельные ветки (участки) по местам изменения расхода воздуха или изменениям площади сечения. Каждый нумеруется. Естественное располагаемое давление определяется по формуле:

Δре = h .g ( ρн –ρвн), где

h – разница при подъёме между верхней и нижней точкой ρн и ρвн – плотность внутри/снаружи

Плотности определяются с использованием параметров перепада температуры воздуха внутри и наружи помещения. Они указаны в СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование». Далее берётся формула:

Σ(R . L .βш +Z) ≤Δ ре, где

Σ(R . L .βш +Z) – сумма расхода давления на рассматриваемом участке, где

R – удельные потери от трения (Па/м); L – длина рассматриваемого участка (м); βш – коэффициент шероховатости стенок вентканалов; Z – потери давления в местных сопротивлениях; Δре – естественное располагаемое давление.

Подбор заканчивается, когда размер сечения воздушного канала удовлетворяет условию формулы. Возможные варианты размеров представлены в таблицах:

Важно заложить небольшой запас по давлению, будет вполне достаточно 5-10%. Подбор воздуховода ведётся по специальным таблицам

Если необходим квадратного или прямоугольного сечения, то его приводят по формуле эквивалента круглого канала:

Подбор воздуховода ведётся по специальным таблицам. Если необходим квадратного или прямоугольного сечения, то его приводят по формуле эквивалента круглого канала:

dэкв= 2а . в /(а+в), где

а,в – геометрические размеры канала, см

Для чего нужна вентиляция

Задача вентиляции — обеспечить необходимый воздухообмен в помещении, создать оптимальные или приемлемые условия для длительного пребывания человека.

Исследования установили, что 80% времени люди проводят в помещениях. За один час в спокойном состоянии человек выделяет в окружающую среду 100 кКал. Теплоотдача происходит конвекцией, излучением и испарением. При недостаточно подвижном воздухе перенос энергии с поверхности кожи в пространство замедляется. В результате страдают многие функции организма, возникает ряд заболеваний.

Макет дома с системой вентиляцииИсточник yandex.ru

Отсутствие или недостаточная вентиляция, особенно в помещениях с повышенной влажностью, приводит к застойным явлениям. Они сопровождаются нашествием трудновыводимых плесневых грибков, неприятными запахами и постоянной сыростью. Влага неблагоприятно отражается на строительных конструкциях, приводит к гниению деревянных и коррозии металлических элементов.

При избыточной тяге увеличивается выход воздушных масс в атмосферу, что зимой приводит к потере большого количества тепла. Растут затраты на отопление дома.

Качество и чистота воздуха — основной фактор, который определяет эффективность вентиляции. Загрязняющие испарения от строительных материалов, мебели, пыль и углекислый газ должны своевременно удаляться из помещения.

Существует обратная ситуация, когда воздух в доме или квартире гораздо чище, чем на улице. Выхлопные газы на оживленной трассе, дым или копоть, ядовитые загрязнения промышленных предприятий способны отравить атмосферу внутри помещений. Например, в центре большого города содержание угарного газа в 4-6 раз, диоксида азота в 3-40 раз, сернистого газа в 2-10 раз выше, чем в сельской местности.

Расчет вентиляции производят, чтобы определить вид системы воздухообмена, ее параметры, при которых будут сочетаться энергоэфективность жилья и благоприятный микроклимат в помещениях.