Флокулянты

Оглавление

Механический способ


Механическая очистка от нефтепродуктов проводится в комплексе с другими способами. Исключения составляют случаи, когда механически очищенные стоки пригодны для повторного технологического использования.

Для механической очистки стоков от нефтепродуктов используются методы:

  • отстаивания;
  • удаления нефтепродуктов с помощью центробежного ускорения;
  • механической фильтрации.

При использовании этих методов в среднем удается отделить до 65% твердых частиц нефтепродуктов.

Стадия отстаивания

Во время отстаивания органические частицы с плотностью большей, чем плотность воды, опускаются вниз, а частицы с меньшей плотностью поднимаются на поверхность.

Такой принцип работы характерен для:

  • песколовок;
  • мазутоловок;
  • бензоловок.

Конструктивно бывают отстойники статического и динамического типов. В первом случае процесс очистки происходит путем выдерживания стоков в спокойном состоянии в течение от нескольких часов до суток.

В динамическом отстойнике отделение твердых частиц нефтепродуктов происходит в движущемся потоке. На практике применяются динамические отстойники горизонтального и вертикального видов.

Процесс центрифугирования


Центрифугирование или удаление производных нефти с использованием принципа центробежного ускорения основывается на применении гидроциклонов. Водный поток под давлением направляется в аппарат.

Воздействия центробежных сил вызывает оседание твердых составляющих нефтепродуктов, а очищенная вода выводится через отводную трубу.

Внимание! Коэффициент полезного действия при таком способе очистки составляет до 70%

Механическая фильтрация

Способ эффективный при необходимости устранения вязких частичек нефти небольших размеров. С этой целью используются материалы зернистой, пористой текстуры либо специальные сетки, так называемые тканевые фильтры.

Принцип действия данного метода основан на способности пористых материалов задерживать частицы углеводородной органики текучей консистенции.

Конструктивно такие фильтровальные станции представляют собой вращающиеся барабаны диаметром до 3 м, с закрепленными в них фильтрующими экранами. Стоки поступают внутрь установки, проходят сквозь фильтрующие элементы, и передаются на следующую стадию очистки.

Еще один метод фильтрации – применение фильтрующих элементов каркасного типа.

Рабочим наполнителем фильтра служат:

  • речной песок;
  • антрацитный уголь;
  • керамзитовые окатыши разных калибров;
  • шлаки, в виде отходов металлургического производства;
  • различные синтетические материалы, например пенополистирол.

Инструкция по применению

Для очистки воды может применяться непрерывная или ударная коагуляция. В режиме непрерывной коагуляции реагент постоянно подается равными порциями при помощи насоса-инжектора, работающего в режиме фильтрации.

Для проведения ударной (ручной) коагуляции необходимо вручную добавить препарат в скиммер или непосредственно в воду. В результате на дне водоема образуется осадок, который спустя время следует удалить.

При проведении ударной коагуляции во время добавления раствора насос должен работать в режиме циркуляции – а не фильтрации!

Рассмотрим подробнее порядок работ при проведении очистки методом ручной коагуляции. Порядок действий будет таким:

  1. Расчет дозы препарата. Чтобы правильно подобрать дозу, нужно знать объем бассейна и учитывать степень загрязнения. Для расчета объема прямоугольного водоема нужно перемножить его длину, ширину и глубину. Рассчитать объем круглой чаши можно по формуле: глубина*3,14*радиус в квадрате.

    Зная объем, необходимо следовать инструкции. Если данных нет, нужно взять среднее рекомендуемое значение для активного вещества. Так, для ОХА эти значения составляют 20-50 мл на тонну воды. Значит, на каждый кубометр нужно добавить от 20 до 50 мл раствора, учитывая степень загрязненности.

  2. Подготовка раствора. Реагенты в сухом виде предварительно нужно развести в воде согласно рекомендациям производителя, или отталкиваясь от средних значений доли активного вещества в растворе. Так, массовая доля оксихлорида алюминия должна составлять 14-16%. Жидкое средство также рекомендуется смешать с водой в пропорции 1:5.
  3. Заливка в скиммер или воду. Если требуется добавить реагент напрямую в воду, необходимо при выключенной фильтрации, спустившись в бассейн и создав небольшой водоворот, распределить раствор по всей поверхности воды при помощи лейки.
  4. Удаление осадка. Через 8-12 часов следует удалить образовавшиеся на дне и на поверхности хлопья при помощи специального водяного пылесоса.

Виды флотационных устройств

Можно выделить основные варианты:

  • На жидкости создается пленочный слой, на который налипают нерастворимые элементы грязи.
  • Пенистая – в жидкость нагнетают газы и пенообразующие реагенты. Газовые капсулы притягивают к себе и доставляют наверх нерастворимые вещества. Химикаты необходимы для устойчивости пенистой шапки, которая удаляется механически. Затем она сгущается и проходит фильтрацию.
  • Маслянистая – капли масел стремятся вверх, забирая по пути взвеси. После этого масляный слой убирают и очищают.

Важно. Чаще всего в очистных комплексах используется принцип пенистой флотации

Этот вариант избавления от загрязняющих веществ наиболее эффективен.

Кроме того, оборудование классифицируется по виду образования воздушных капсул.

Механический тип

Флотационное оборудование простого типа — резервуары, в которых осуществляют перемешивание канализационных отходов лопастями.

Оборудование подходит для жидкостей с высоким количеством взвешенных загрязнений, склонных к пенообразованию.

Напорный

Самыми эффективными и наиболее распространенными являются флотационная установка с подачей газов в воду напорным способом. Его используют, если плотность взвесей сравнима плотности жидкости. В этом варианте мелкодисперсные загрязнения не выпадают в осадок.


Напорный флотатор

Основой данного метода является введение газов в воду под давлением в специальных емкостях. Затем водовоздушная смесь подается в резервуар со стоками. Из-за перепада давления происходит активное образование мелких газовых капсул.

Действие сил поверхностного натяжения закрепляет их к молекулам загрязнений. Образованный флотошлам всплывает на верх резервуара. Здесь он механически удаляется.

Принцип работы простейшей флотационной машины:

  1. В смесительную камеру насоса поступают воздух и вода. Здесь выполняется растворение газа в жидкости. Остатки избыточного воздуха выпускается посредством клапана.
  2. Водная смесь с воздушными капсулами по системе труб поступает в танк флотационной установки.
  3. В эту емкость также заливают канализационные стоки, которые прошли предварительную очистку в отстойнике.
  4. В резервуаре происходит сбор взвешенных загрязнений посредством капсул с газом.
  5. Фотошлам собирается в верхней части емкости в виде пенного слоя, который убирается механически.

Практически чистая вода сливается из флотационного танка. Часть ее перенаправляется в насос для повторного смешивания с газом.

Электрический

Для выделения взвешенных загрязнений из канализационной массы также используют электрический ток.


Электрический флотатор

Принцип работы флотатора для очистки сточных вод электрического типа:

  1. В резервуаре с загрязненной водой размещаются электроды.
  2. После подачи напряжения молекулы воды разделяются на кислород и водород. На концах электрических стержней образуются капсулы с электролитическими газами.
  3. Они поднимаются вверх, собирая частицы загрязнений.

Справка. При проведении электрической очистки стоков используется минимальное количество химических добавок.

Этот вариант достаточно эффективен при установке стержней из алюминия или железа. В качестве вспомогательных реагентов для образования устойчивых соединений взвесей грязи и капсул газа выступают ионы металлов.

Большим достоинством использования электроустановок является простая конструкция, не занимающая много места.

В составе такого оборудования отсутствуют емкости для реагентов и сатураторы. Но увеличиваются затраты на электроэнергию при очистных работах. Кроме того, требуется оборудование для вывода водорода.

Для введения в воду воздуха также используют различные материалы с пористой структурой. В некотором оборудовании производится выделение газа в результате реакций химического типа.

Свойства

ГИДРОФЛОК 423 представляет собой водорастворимый реагент на основе сополимера акриламида и акрилата натрия с увеличенным содержанием групп анионных производных акриламида, придающих ему отрицательный заряд в водных растворах. Это сыпучий мелкозернистый продукт. Основные физико-химические свойства (значения, полученные на образце реагента) представлены в таблице.

Наименование показателя Значение
Внешний вид Сыпучий порошок белого цвета
Гранулометрический состав порошка:

% частиц размером 1,25 мм, не более

% частиц размером 0,10 мм, менее

 

10

2

Тип ионного заряда Анионный
Характеристика заряженных групп (заряд) Среднезаряженные (средний)
Молекулярная масса Очень высокая
Насыпная плотность, кг/м3 700
Вязкость по Брукфильду раствора с концентрацией 1 г/л при 25 С, мПа*с 180

Виды флотационной очистки стоков

Процесс флотации кратко описан как насыщение сточных вод воздухом с его диспергированием. То есть главная задача флотации заключается в получении пузырьков нужного диаметра в толщах сточных вод. Как именно это осуществляется описано ниже.

Выделение пузырьков воздуха из раствора

Чтобы выделить воздушные пузырьки из раствора, используют напорную и вакуумную флотацию. Напорная флотация представляет собой нагнетание воздуха, а затем резкое снижение давления в системе, что провоцирует выделение пузырьковой массы в толще воды.

Вакуумная флотация несколько схожа с напорной, но ее реализуют иначе. Первым этапом является прохождение воды через камеру аэрации, где она насыщается воздухом. После этого она поступает в дизаэратор, где удаляется нерастворенный воздух. Последним этапом является прохождение камеры флотации, в которой давление понижается , что вызывает бурное образование пузырьков.

Такими способами весьма успешно удаляются мелкодисперсные примеси.

Пропускание воздуха через пористые материалы

Это один из простейших способов с точки зрения физики для получения диспергированного воздушного потока. Перед попаданием воздуха в сточные воды, его пропускают через материалы с порами, такие как пластины со сквозными щелями. Диаметр пузырьков регулируется размером данных пор.

Электролизная флотация

Этот способ воплощают помещением в воду двух электродов, через которые пускают ток. Во время электролиза вода вокруг электродов расщепляется на пузырьки водорода и кислорода. Наиболее часто используемый материал для электродов: алюминий и железо. Эти металлы выделяют в воду коагулянты, которые связывают взвеси и превращают их в подобие хлопьев. Эти хлопья соединяются с воздушными пузырьками и выходят на поверхность сточных вод в вид пены.

Механическое диспергирование

Кроме образования пузырьков воздуха в воде при помощи смены давления, также применяют механические способы. Для этого также существует несколько путей:

  • Импеллерная установка перемешивает водную массу с использованием турбины. При этом пузырьки получаются небольшого размера, что подходит для удаления нефтепродуктов и жиров. Скорость турбины позволяет регулировать размер пузырьков – чем выше скорость, тем меньше диаметр образуемых пузырьков;
  • Безнапорная флотация, представляющая собой применение колеса, которое соединяют с центробежным насосом. Пузырьки, которые получают в результате этого процесса, крупные и пригодны для удаления жиров, волокнистых частиц, таких как, например, шерсть;
  • Пневматическая флотация осуществляется насыщением воздухом через форсунки труб, которые уложены на дно камеры. Такой способ применяют для очистки агрессивных стоков, которые могут повредить флотационным установкам – импеллеру и колесу.

Пузырьки в этих трех способах образуются в результате вихревого процесса, который стимулируется перемешиванием.

Обогащение руд

Процесс флотации успешно применяется при первичной переработке всевозможных руд, позволяющий отделить ценную фракцию с повышенным содержанием металла или его соединений. Основывается он на различиях свойств поверхности разделяемых минералов.

Флотация руды представляет собой трехфазный процесс:

  • твердая фаза представляет собой измельченное полезное ископаемое;
  • жидкой фазой является пульпа;
  • газовую фазу образуют пузырьки воздуха, пропускаемые через пульпу.

Флотация бывает пенной, пленочной или масляной — в зависимости от формы продукта, образующегося на поверхности жидкой фазы.

Преимущества и недостатки

Флотаторная система представляет собой популярный и востребованный метод, с помощью которого осуществляется очистка. Поэтому он имеет много сильных сторон:

  • Системы обладают достаточно широкой сферой применения. Что касается промышленных предприятий, то практически каждая организация имеет такую установку.
  • Низкие эксплуатационные затраты. Система не требует постоянного вмешательства со стороны ремонтной бригады, что значительным образом экономит бюджет.
  • Система проста в установке.
  • Скорость очищения значительно выше, чем при использовании метода отстаивания жидкости.
  • Очистка практически 100%.

К недостаткам можно отнести тот факт, что данная установка является лишь звеном в большой системе очищения. Жидкость, которая попадает во флотатор, должна быть предварительно очищена от песка, полимеров и других грубых компонентов. Если этого не будет, система сломается.

Что касается обслуживающих организаций жилых домов и многоквартирных сооружений, то жители защищены от возникновения неприятного запаха от стиральной машины. Специалисты регулярно проводят осмотр системы. Очищенная жидкость используется для полива почвы и прочих бытовых манипуляций.

Флокулянты для очистки сточных вод: виды, принцип работы и эффективность применения

Качественное осветление стоков гарантирует полную безопасность для окружающей среды при их сбросе в водоемы. Процесс обработки нечистот протекает в несколько этапов.

Одним из них является использование флокулянтов для очистки сточных вод. Благодаря химической реакции все микро- и макровзвеси в составе нечистот приобретают более крупные размеры.

Это позволяет удалять их в дальнейшем механическим способом.

Определение и предназначение

Флокулянтами называют химические реагенты, которые способствуют очистке бытовых и промышленных сточных вод от примесей. В результате реакции все сторонние вещества, пребывающие в грязной жидкости, формируются в хлопья. Флокуляцию используют как вторичный этап очистки после коагуляции. Основное назначение реагентов:

  • предварительная очистка воды из водоемов перед её подачей в городские коммуникации;
  • осветление промышленных стоков от молокозаводов, предприятий химической/фармацевтической промышленности и др.;
  • очистка бытовых сточных вод.

Флокуляция является и неотъемлемой частью таких процессов, как производство лекарств, обогащение, переработка нефтепродуктов.

Виды и классы флокулянтов

Все реагенты для флокуляции делят на классы по типу их происхождения:

  • Органические (природные): гуаровые смолы, крахмал и декстрин, натрия альгинат, эфир целлюлозы.
  • Неорганические: кремниевая кислота. Особенно активно она действует против гидроксидов металлов – алюминия, железа, магния, и пр. В результате работы кремниевой кислоты образуются тяжелые прочные хлопья.
  • Синтетические: высокомолекулярные соединения, которые органически растворяются в воде и при этом молекулярная их масса варьируется от тысяч до миллионов.

Различают также катионные, анионные и нейтральные флокулянты (по электрическому заряду). Самым востребованным является последний вид — полиакриламид (ПАА). Агрегатное состояние реактивов: жидкое и порошкообразное.

Принцип работы флокулянтов в воде

При добавлении реагентов в загрязненную воду происходит следующий процесс:

  • Все флокулянты вступают во взаимодействие с коллоидными частицами. Сначала оседают на их поверхности, значительно нарушая водно-солевой баланс оболочки. Параллельно флокулянты сводят на нет электрический заряд коллоидных примесей. Изначально все коллоидные соединения как бы окружены мешающей слипанию частиц оболочкой. Ее и разрушает флокулянт.
  • За счет своего высокого молекулярного веса и уже произошедших в воде реакций происходит фиксация реагентов на поверхности сторонних примесей. При этом они образуют своеобразные мостики, благодаря которым формируется связь между молекулами флокулянтов.
  • В результате все взвешенные частицы коллоидных растворов слипаются в большие видимые хлопья. Их еще называют флоккулами.

После прошедшей реакции сторонние примеси в виде хлопьев можно легко удалить из осветляемой жидкости. Делается это с помощью механических фильтров.

Эффективность химического метода

Флокуляция как способ очистки сточных вод позволяет с высокой эффективностью справляться с большими объемами загрязненных жидкостей. При этом можно смело говорить о высокой интенсивности процесса осветления с минимальными затратами. В результате использования флокулянтов удается добиться таких результатов:

  • очистить максимально загрязненные бытовые/промышленные стоки;
  • серьезно ускорить процесс осаждения примесей в жидкости;
  • предупредить возможное попадание загрязнений в воду на следующих этапах очистки;
  • отказаться от дополнительных затрат на усиление производительности очистной станции;
  • увеличить срок службы механических фильтров на ЛОС;
  • снизить расходы на капитальное осветление стоков.

Обо всех эффектах от использования флокулянтов можно говорить только при условии применения метода в комплексе, после этапа коагуляции. Как правило, сами по себе реагенты не очищают воду полноценно, метод не работает.

Особенно актуально включение процесса флокуляции в систему очистки стоков в том случае, если станция в скором времени будет получать большие объемы загрязненных вод. Здесь без основательной модернизации ЛОС и существенных финансовых вложений удастся сохранить производительность очистной станции. По факту придется потратиться только на закупку порошка-флокулянта.

Использование приведенного метода в быту неактуально, поскольку процесс сложный и неоправданный для малого объема загрязненной воды.

Нововведения

Методики не стоят на месте, и применяемая в медицине флотация в последнее время также была усовершенствована. В частности, удалось разработать такую центрифугу, которая оснащена угловым ротором. В этой установке контейнеры не колеблются свободно, последнее вращение не сопровождается наложением на покровное стекло.

При завершающем этапе обработки смеси в установке пробирку нужно поставить вертикально в специальный штатив, затем долить в нее раствор, сохраняя верхний слой в целости. Когда мениска становится положительной, устанавливают покровное стекло и оставляют стоять пробирку не более пяти минут. Далее стекло убирают и изучают его под микроскопом также под двумя мощностями увеличения.

Отличие от коагулянтов

Коагулянты, как и флокулянты, способствуют очищению воды от мелкодисперсного мусора, объединяя между собой загрязнения и осаждая их.

Цель применения очень похожа, однако механизм течения несколько отличается.

  1. В основу коагуляционного процесса входит дестабилизация зарядов загрязняющих частиц. Коллоидная грязь, которая делает воду мутной, состоит из микроскопических отрицательно заряженных частиц.

    Они настолько малы, что проходят через песчаный фильтр, а одноименный электрический заряд заставляет их постоянно находиться в движении.

    Одинаковый заряд так же мешает им объединяться в группы. Введение коагулянтов приводит к потере заряда и устранению электростатического взаимодействия.

  2. Флокуляция образует более крупные соединения за счет полимерной связи. Происходит укрепление и увеличение объема фильтруемых веществ, которые можно потом без труда удалить со дна емкости.

Различие заключается не только в механизме течения

  • Коагуляция проходит в течение 1-3 минут после тщательного перемешивания и при строгом соблюдении температуры в пределах 20-25 градусов.
  • Флокуляция может длится 30-60 минут, требуя некоторого времени для отстаивания. Это объясняется длительной стадией формирования осадка.

Электрофлотация

Этот метод стали использовать во второй половине 20-го века. Тогда обнаружилось, что электролизные газы гораздо эффективнее, чем инертные или воздух, увеличивают интенсивность флотации. Это позволяет выделять нерастворимые в водах нефтепродукты, смазочные масла, малорастворимые соединения тяжелых и цветных металлов, которые образуют в стоках устойчивые эмульсии. Но помимо электролизных газов на удаление некоторых примесей влияет искусственно созданное электрическое поле, в котором заряженные частицы движутся к противоположно заряженным электродам.

Существенным недостатком электрофлотации является малая производительность, высокая стоимость электродов, их износ и загрязнение, а также взрывоопасность.

Основные виды коагулянтов

Существует много разновидностей коагулянтов. Подробно перечислять их формулы в статье мы не станем. Рассмотрим лишь две основные группы, которые в зависимости от исходного сырья делятся на органические и неорганические.

Одна категория коагулянтов способна обезжелезивать воду и выводить из нее соли алюминия, другая – повышать либо понижать кислотный показатель pH, некоторые реагенты – оказывать комплексный эффект

Сегодня производством коагулянтов занимаются многие отечественные и зарубежные компании. Выпускаемые ими реагенты нового поколения отличаются от коагулянтов, выпускаемых еще при Советском Союзе, улучшенными техническими характеристиками.

Органические природные вещества

Они представляют собой специально созданные реагенты, которые путем ускорения слипания присутствующих в воде агрессивно неустойчивых частиц способствуют облегчению процессов, связанных с их отделением и осаждением. Органика помогает стимулировать объединение загрязнителей в плотные суспензии и эмульсии, облегчающие процесс их вывода из воды.

Высокомолекулярные вещества хорошо борются с хлором и эффективно устраняют неприятные «ароматы» в жидкости, к примеру: часто присутствующий в ожелезненной жидкости запах сероводорода

При взаимодействии с молекулами загрязнений органические коагулянты значительно уменьшаются в своих размерах. По завершении реакции они выпадают в виде небольшого количества осадка.

Благодаря минимизации объема скапливаемого на дне емкости осадка намного проще и быстрее отфильтровать. При этом уменьшенное количество осадка никоим образом не сказывается на качестве очистки.

Из-за ограниченности сырьевой базы природные реагенты не нашли широкого применения при очистке сточных вод в промышленных масштабах. Но для бытовых целей их используют часто.

Синтетические коагулирующие соединения

Эти типы реагентов создаются на основе минеральных и синтетических элементов. Полимеры способствуют образованию высокого катиодного заряда, стимулируя тем самым быстрое появление хлопьев. Они отлично взаимодействуют с водой, оказывая на нее комплексный эффект: умягчая ее структуру, а также избавляя от грубых примесей и солей

Наибольшее распространение получили соли поливалентных металлов, созданные на основе железа или алюминия. Железо применяют для грубой очистки.

Флокулянты – вторичные коагулянты, превращающие суспензии и эмульсии в хлопья, используются в паре с первичными коагулянтами. Тандем способен очищать как малые порции бытовых отходов, так и большие объемы, создаваемые промышленными предприятиями

Среди железных составов самыми популярными считаются:

  • хлорное железо – гигроскопичные кристаллы, имеющие темный металлический блеск, отлично устраняют крупные частицы загрязнений и легко выводят запах сероводорода;
  • сульфат железа – кристаллический гигроскопичный продукт хорошо растворяется в воде и эффективен при очистке канализационных стоков.

За счет низкого уровня вязкости при малой молекулярной массе такие реагенты отлично растворяются в любом типе обрабатываемой жидкости.

Из коагулянтов, созданных на основе алюминия, наибольшее распространение получили:

  • оксохлорид алюминия (ОХА) – применяют для обработки воды с повышенным содержанием органических природных веществ;
  • гидроксохлорсульфат алюминия (ГСХА) – отлично справляется с природными отложениями сточных вод;
  • сульфат алюминия – неочищенный технический продукт в виде кусков серо-зеленого цвета применяют для очистки питьевой воды.

В прежние годы полимеры применяли лишь в качестве добавки к неорганическим коагулянтам, используя их в качестве стимуляторов, способствующих ускорению образованию хлопьев. Сегодня эти реагенты все чаще применяют как основные, заменяя ими неорганические.

Если сравнивать органические и синтетические вещества, то первые выигрывают в том, что действуют намного быстрее. К тому же они способны функционировать практически в любой щелочной среде и не вступают во взаимодействие с хлором.

Для адсорбции растворенных в воде солей, ионов тяжелых металлов и других взвесей порция органического реагента потребуется в разы меньше, чем синтетического аналога (+)

Органические действующие соединения выигрывают и в том, что не изменяют показатель pH в воде. Это позволяет их использовать для очистки воды, где присутствуют колонии планктона, растут водоросли и крупные микроорганизмы.

Как нейтрализовать стоки

Нейтрализация стоков способствует нормализации водородного показателя. Такой химический состав воды неопасен для человека и природы. Её можно использовать повторно для различных нужд.

Процесс нейтрализации основан на применение реагентов, которые используются с учетом концентрации и составных элементов кислой среды. Специалисты выделяют 3 вида стоков с кислотами:

  • преобладание слабых кислот;
  • наличие сильных кислот;
  • преобладание серной и сернистой кислоты.

Нейтрализация вод с серной кислотой зависит от используемого реагента. Процесс протекает по разным уровням. Если использовать известковое молоко, тогда в остаток выпадет гипс. Он будет оседать на стенках труб.

Чтобы нейтрализовать щелочные воды, применяют кислоты или кислые газы. С помощью последней технологии осуществляется одновременная нейтрализация стоков и очистка от вредных компонентов газов. Чтобы рассчитать количество необходимого кислого газа, определяется уровень массотдачи. Подобная технология считается ресурсосберегающей, так как она ликвидирует сброс стоков, сокращая потребление свежей воды, экономя тепловую энергию на её подогрев.

При разработке технологической схемы по нейтрализации сточных вод учитывается:

  • возможная одновременная нейтрализации поступающих со стоками щелочей и кислот;
  • наличие щелочного резерва;
  • природная нейтрализация водоемов.

Для реализации рассматриваемого процесса используется специальное оборудование. Нейтрализация осуществляется в накопителе, отстойнике либо осветителе. Выбор оборудования зависит от климатических условий, длительности хранения стоков.

Для реализации нейтрализации в стоки добавляют разные химикаты, которые вступаю в реакцию с кислотами или щелочами образуют взвесь. Она выпадает в осадок. Её объем определяется по следующим показателям:

  • количество металлов, ионов кислот в исходной воде;
  • количество и вод применяемого реагента;
  • используемый уровень осветления.

Принцип работы флокулянтов в воде

При добавлении реагентов в загрязненную воду происходит следующий процесс:

  • Все флокулянты вступают во взаимодействие с коллоидными частицами. Сначала оседают на их поверхности, значительно нарушая водно-солевой баланс оболочки. Параллельно флокулянты сводят на нет электрический заряд коллоидных примесей. Изначально все коллоидные соединения как бы окружены мешающей слипанию частиц оболочкой. Ее и разрушает флокулянт.
  • За счет своего высокого молекулярного веса и уже произошедших в воде реакций происходит фиксация реагентов на поверхности сторонних примесей. При этом они образуют своеобразные мостики, благодаря которым формируется связь между молекулами флокулянтов.
  • В результате все взвешенные частицы коллоидных растворов слипаются в большие видимые хлопья. Их еще называют флоккулами.

После прошедшей реакции сторонние примеси в виде хлопьев можно легко удалить из осветляемой жидкости. Делается это с помощью механических фильтров.

2 этап. Блок фильтрования

На следующем этапе испытаний предусматривалась доочистка воды на самопромывном фильтре Dynasand.

Доочистка воды на самопромывных фильтрах Dynasand с загрузкой мелкозернистым гравием крупностью 1–3 мм, а также песком крупностью 0,4–0,5 мм не привела к снижению мутности.

Данная система является одним из наиболее успешных решений по фильтрованию на зернистой загрузке и по сравнению со стандартными фильтрами (типа ФОВ) дает воду лучшего качества.

Результаты лабораторных анализов осветленной и фильтрованной воды приведены в табл. 6.

Таблица 6

№ п/п Наименование пробы Мутность, NTU Мутность, мг/л
1 Осветленная вода 1,5–5,2 0,9–3,0
2 Фильтрованная вода 1,5–5,2 0,9–3,0
3 Требования 1,0 0,5

Таким образом, применение на данном этапе очистки фильтра Dynasand с загрузкой мелкозернистым гравием крупностью 1–3мм не смогло обеспечить доочистку осветленной воды по взвешенным веществам до требуемых значений, поскольку оставшаяся в осветленной воде взвесь тонкодисперсная и не задерживается на фильтре.

В результате фильтрования осветленной воды в лабораторных условиях через обеззоленный фильтр с размером пор 8–12 мкм мутность воды не снизилась. Таким образом, применение в данной схеме фильтров, загруженных зернистой загрузкой даже с минимальным размером гранул (0,4–0,5мм) и тонкостью фильтрования до 50 мкм, не сможет обеспечить требуемую степень очистки воды от взвешенных веществ.

Таким образом, для достижения требуемой концентрации взвешенных веществ (мутности) необходимо использовать принципиально другой метод осветления. В данном случае было применено осветление воды на установке ультрафильтрации.

Замена песчаного фильтра на установку ультрафильтрации (УФ).

Установка состоит из следующих блоков:

  • предварительной очистки (сетчатый фильтр);
  • дозирования кислоты;
  • мембранный модуль INGE;
  • промывки.

Постоянными параметрами за время испытаний (температура обрабатываемой воды – 16°С) являлись:

  • производительность установки по фильтрату – 1,5 м3/ч,
  • время фильтроцикла – 45 мин,
  • продолжительность обратной промывки – 60 сек.

Контролируемыми параметрами являлись:

ТМД при проведении фильтрации,

мутность ультрафильтрованной воды.

Как показали испытания в течение нескольких месяцев, указанный режим обеспечивал стабильную работу данного аппарата.

Результаты лабораторных анализов воды по ступеням обработки приведены в табл. 7.

Таблица 7

Источник воды Фосфор фосфатов, мг/л Фториды, мг/л Мутность, мг/л Кальций, мг/л
Исходная вода 400 10 50 100
Осветленная вода после отстойника 0,5–1,2 1,1–2,7 0,9-3,0
Вода после УФ 0,5–1,2 1,1–2,7 Менее 0,5 30–80

Пилотные испытания на холодной воде подтвердили тот факт, что одним из основных факторов, влияющим на эффективность процессов коагуляции и осаждения при известковании, является температура обрабатываемой воды.

При проведении реагентной обработки поверхностного стока в зимнее время (температура обрабатываемой воды – 3–5С) ухудшились условия образования и укрупнения твердой фазы, вследствие этого увеличилась остаточная щелочность и содержание примесей в обработанной воде.

При снижении температуры обрабатываемой воды и ухудшении условия выделения осадка в ламельном блоке, вся образующаяся взвесь задерживается на установке ультрафильтрации, при этом увеличивается перепад давления на мембране, что, в свою очередь, приводит к снижению времени фильтроцикла установки и увеличению расхода воды на собственные нужды.

Проведение испытаний при низких температурах обрабатываемой воды привело к снижению времени фильтроцикла с 45 до 15 минут. Без увеличения суммарного количества сточных вод с ламельного отстойника и мембранной установки.