Оглавление
Расшифровка кода маркировки светодиодной ленты
Для того, чтобы понять, как маркируется лента, нужно обратить внимание на таблицу:
Позиция в коде | Назначение | Обозначения | Расшифровка обозначения |
---|---|---|---|
1 | Источник света | LED | Светодиод |
2 | Цвет свечения | R | Красный |
G | Зеленый | ||
B | Синий | ||
RGB | Любой | ||
CW | Белый | ||
3 | Способ монтажа | SMD | Surface Mounted Device (Устройство, монтируемое на поверхность) |
4 | Размер чипа | 3028 | 3,0 х 2,8 мм |
3528 | 3,5 х 2,8 мм | ||
2835 | 2,8 х 3,5 мм | ||
5050 | 5,0 х 5,0 мм | ||
5 | Количество светодиодов на метр длины | 30 | |
60 | |||
120 | |||
6 | Степень защиты: | IP | International Protection |
7 | От проникновения твердых предметов | 0-6 | Согласно ГОСТ 14254-96 (стандарт МЭК 529-89) «Степени защиты, обеспечиваемые оболочками (код IP)» |
8 | От проникновения жидкости | 0-6 |
Для примера возьмем конкретную маркировку LED CW SMD5050/60 IP68. Из нее можно понять, что перед нами светодиодная лента белого цвета для поверхностного монтажа. Элементы, установленные на ней, имеют размер 5х5мм, в количестве 60 шт/м. Степень защиты позволяет ей длительное время работать под водой.
Ассортимент ламп для дома на световых диодах довольно широк
Основные технические характеристики
Чтобы понять, подойдёт ли данный тип LED-ленты для решения поставленных задач, необходимо узнать её параметры. Для этого предлагаем рассмотреть основные технические характеристики светодиодной ленты SMD 5050.
Напряжение питания
Значительная часть светодиодных лент рассчитана на работу от сети постоянного тока напряжением 12 В, что обусловлено несколькими факторами:
- +12 В – это стандарт, применяемый для многих видов аккумуляторов, включая автомобильные;
- +12 В позволяет запитать группу из 3-х последовательно включенных светодиодов любого цвета с минимальными потерями на ограничивающем резисторе;
- +12 В является наиболее безопасным напряжением для человека.
Светодиодная лента SMD 5050 на 12 В – это оптимальный вариант для конструирования подсветки в домашних условиях, т.к. для её подключения можно воспользоваться не только готовым блоком питания, но и блоком питания от компьютера или аккумулятором от ИБП.
Также в продаже можно найти светодиодные ленты SMD 5050 на 24 В и 36 В, подключаемые к соответствующему БП постоянного тока, и с питанием от сети переменного тока 220 В, подключаемые через диодный выпрямитель. Модели с таким напряжением не пользуются большой популярностью по разным причинам, в т.ч. из-за большой кратности резки. Для адресной ленты SMD 5050 напряжение питания составляет 5 В.
Степень защиты от влаги и пыли
Важным параметром при выборе светодиодной ленты является степень защиты от внешнего воздействия твёрдых предметов и воды (IPXX). Пренебрегать этим параметром нельзя, т.к. он влияет на стоимость и на способность изделия противостоять негативному влиянию внешних факторов в процессе эксплуатации. Как правило, внешняя оболочка светодиодных лент SMD 5050 имеет следующий класс защиты:
- IP20 – от твёрдых предметов диаметром более 12,5 мм и никак не препятствует попаданию воды. Такое изделие не имеет никакого покрытия и может применяться только внутри сухих помещений (гостиные, спальни, офисы).
- IP33 – от твёрдых предметов диаметром более 2,5 мм и от капель воды. В данном случае покрытие выполнено из тонкого слоя лака. Кроме сухих помещений, лента может применяться для подсветки кухни, где существует вероятность попадания на неё водяных капель.
- IP54 – с частичной защитой от пыли и брызг воды в виде силиконового слоя только со стороны элементов. Как и в предыдущем варианте, такая лента предназначена для оформления интерьера кухонь и прочих помещений с временно повышенной влажностью.
- IP65 – с полной защитой от пыли и струй воды. В данном случае защитный слой – это силиконовое покрытие со всех сторон. Светодиодная лента с IP выше 65 вполне подходит для уличной подсветки и ванных комнат.
- IP67 – выдерживает кратковременное нахождение под водой. Визуально от изделий с IP65 отличается типом оболочки (ПВХ профиль и силикон сверху). Она прекрасно подходит для авто- и вело- тюнинга.
- IP68 – наивысшая степень пыле и влагозащиты. Такая LED-лента размещена внутри ПВХ-трубки и способна длительно без повреждений выдерживать воздействие воды под давлением. Сфера её применения – украшение бассейнов и фонтанов.
Плотность светодиодов
Этот параметр указывает на количество светодиодов в одном погонном метре ленты и может принимать значения: 30, 60, 120 и 240 шт./м. Чем выше плотность монтажа, тем больше световой поток и мощность потребления светодиодной ленты SMD 5050. Чтобы не допустить деградации светодиодов, ленту с плотностью 120 и 240 светодиодов на метр необходимо клеить на алюминиевый профиль.
Иногда вместо плотности (шт./м.) на бобине можно увидеть надпись «количество – 300 шт.» Это значит, что производитель указал общее количество светодиодов в ленте длиной 5 метров. Соответственно плотность такой ленты стандартная – 60 шт./м.
Световой поток
Для монохромных и RGB светодиодных лент SMD 5050 результирующая величина светового потока зависит от цвета свечения. Известно, что глаз человека лучше всего воспринимает зелёный свет. Поэтому RGB лента, включённая в режиме зелёного света, кажется наиболее яркой. Также не стоит забывать о том, что световой поток LED-ленты «Эконом» класса примерно на 30% ниже, чем у «Премиум» класса. Причём существенная разница в качестве может наблюдаться даже у одного производителя. Например:
- Foton SMD5050-30led/m-RGB-IP20-Econom – 180 lm;
- Foton SMD5050-30led/m-RGB-IP20-Premium – 270 lm.
На световой поток белой светодиодной ленты SMD5050 влияет цветовая температура (оттенок). Для чипа SMD 5050 нейтрального света (4500-5500°K) нормой считается световой поток 18 лм; тёплого света (3000-4000°K) – 16 лм; холодного света (6000-7500°K) – 20 лм. Умножая данные значения на плотность, получим суммарное количество люмен, испускаемых одним метром светодиодной ленты.
Выходные параметры
Под выходными параметрами подразумевают характеристики светодиодов, измеренные при определённых условиях. Замер выходных параметров производят на номинальном токе и температуре окружающей среды, равной 25°C.
Световой поток и сила света
Оптические характеристики светодиода выражают в виде светового потока и силы света. Световой поток (лм) – это количество световой энергии (видимый свет), излучаемой кристаллом и переносимой на поверхность за единицу времени. Для слаботочных светодиодов с рассеивающей линзой обычно указывают силу света (кд). Её физический смысл состоит в отношении светового потока к углу, внутри которого распространяется излучение. Другими словами, сила света – это интенсивность светового потока в некотором направлении. Отсюда следует, что светодиод с меньшим углом излучения обладает большей силой света при одинаковом световом потоке. Современные 5 мм светодиоды высокой яркости способны выдавать до 15 кд.
Угол излучения
В разных источниках можно встретить названия: «видимый угол», «угол рассеивания». С физической точки зрения его правильно называть «Двойной угол половинной яркости» и обозначать – «2Q1/2». Двойной угол половинной яркости присущ только приборам, которые имеют фокусирующую линзу, и зависит от формы корпуса. Он может иметь значения в пределах 15-140°. Белые светодиоды, предназначенные для smt монтажа, и матрицы на их основе характеризуются широким углом излучения – 115-140°.
Цвет излучения и длина волны
В зависимости от типа полупроводникового материала светодиод излучает свет в определённом волновом диапазоне. Например, зелёному цвету соответствует диапазон длин от 500 до 570 нм. При этом прибор с λ=500-520 нм имеет салатный оттенок, а с λ=550-570 нм – бирюзовый оттенок. Белый светодиод излучает в ультрафиолетовом или в широком спектре с дальнейшим выделением белого света с помощью люминофора. ИК и УФ диоды работают в невидимой зоне спектра. Поэтому в их маркировке указывается рабочая длина волны.
Цветовая температура
Этот параметр присущ исключительно белым светодиодам. Цветовая температура указывает на оттенок, который получают предметы, освещаемые в данном свете. Условно весь белый свет разделяют на тёплый, нейтральный и холодный и измеряют его в градусах Кельвина. Свет от светодиодов с одинаковой цветовой температурой может восприниматься по-разному, что объясняется их различным коэффициентом цветопередачи. Более подробно об этом написано здесь.
Световая отдача
Этот параметр показывает, какое количество светового потока излучает светодиод на единицу потреблённой мощности и измеряется в лм/Вт. Светоотдача является своеобразным коэффициентом полезного действия светодиода. По этому показателю мощные светодиоды уже превзошли газоразрядные лампы, перешагнув рубеж в 150 лм/Вт. Серийно выпускаемые светодиоды имеют светоотдачу около 100 лм/Вт. Световая отдача светодиодных ламп на 220В в 5-7 раз больше, чем у ламп накаливания.
Инерционность
Такое понятие как «инерционность» часто отсутствует в datasheet на светодиоды. Общепринято считать, что они мгновенно включаются и отключаются, т.е. являются безынерционными. На самом деле задержка при переключении может достигать нескольких нс. Для отечественных ИК излучающих диодов инерционность указывают в виде времени нарастания и спада излучающего импульса. Эти временные интервалы колеблются в пределах единиц-сотен наносекунд и оказывают влияние на работу в высокочастотном импульсном режиме.
Классификация
Диоды относятся к простым полупроводниковым радиоэлементам на основе p-n перехода. На рисунке представлено графическое обозначение наиболее распространенных типов этих устройств. Анод отмечен «+», катод – «-» (приведено для наглядности, в схемах для определения полярности достаточно графического обозначения).
Принятые обозначения
Типы диодов, указанные на рисунке:
- А – выпрямительный;
- B – стабилитрон;
- С – варикап;
- D – СВЧ-диод (высоковольтный);
- E – обращенный диод;
- F – туннельный;
- G – светодиод;
- H – фотодиод.
Теперь рассмотрим способы проверки для каждого из перечисленных видов.
Как определить полярность светодиода
Для определения полярности выводов существует несколько методов.
- У безвыводных элементов (включая COB) полюсность напряжения питания обозначается прямо на корпусе – символами или приливами на оболочке.
- Так как светодиод имеет обычный p-n переход, его можно прозвонить мультиметром в режиме проверки диодов. Некоторые тестеры имеют измерительное напряжение, достаточное для зажигания светодиода. Тогда правильность подключения можно контролировать визуально по свечению элемента.
- Некоторые приборы производства CCCP в металлическом корпусе имели ключ (выступ) в районе катода.
- У выводных элементов вывод катода более длинный. По этому признаку определить цоколевку можно только у непаянных элементов. У бывших в употреблении LED выводы укорачиваются и изгибаются для монтажа произвольным образом.
- Наконец, узнать расположение анода и катода возможно тем же методом, что и для определения напряжения светодиода. Свечение будет возможно только при правильном включении элемента – катод к минусу источника, анод – к плюсу.
Развитие технологий не стоит на месте. Ещё несколько десятилетий назад светодиод был дорогой игрушкой для лабораторных опытов. Сейчас без него трудно представить жизнь. Что будет дальше – покажет время.
Что такое полупроводниковый диод, виды диодов и график вольт-амперной характеристики
Что измеряется в люменах и какие нормы освещенности на 1 квадратный метр?
Как правильно рассчитать резистор для светодиода?
Как выбрать светодиодную ленту для подсветки, типы светодиодных лент, расшифровка маркировки
Принцип работы и основные характеристики стабилитрона
Что такое цветовая температура светодиодных ламп?
Принцип работы или что светится в светодиоде
Подключая к p-n переходу постоянное напряжение определенной величины и полярности, вызывают в переходе электрический ток в виде встречного потока носителей электрического заряда — «дырок» – положительных «частиц» и электронов – отрицательных. При встрече этих потоков в p-n-переходе происходит их рекомбинация или слияние. В «дырку» попадает свободный электрон с повышенной энергией, и она исчезает.
Схема работы светодиода.
Справа n-полупроводниковая часть кристалла, «обогащенная» свободными электронами, слева – p-полупроводниковая часть с положительными «частицами» – «дырками».
Энергия высвобождается в виде квантов света. Они эмитируются, т.е. излучаются из торца кристалла. Поток квантов попадает на отражатель. Его полированная поверхность отражает свет в нужном направлении. Особой конфигурацией поверхности формируют требуемую диаграмму направленности светового потока.
Схема получения света в p-n-переходе.
Напряжение для питания перехода прикладывается «+» – к аноду диода, а «-» – к катоду.
Виды ламп
Без зеркального покрытия
Самая простая модель ИЛ. Стекло окрашивается в красный или синий цвета. Встречаются ИЛ с прозрачной колбой. Маркируются как ИКЗ. Могут применяться для обогрева или разогрева еды.
Красная ИЛ без зеркального покрытия
С красным зеркальным покрытием
Зеркальное напыление применяется для создания направленного потока лучей. При помощи зеркальных составов отражение идет только в нужном направлении, что повышает эффективность излучения. Маркируется как ИКЗК. Применяются для обогрева животных и растений.
ИЛ с красным зеркальным покрытием
С синим зеркальным покрытием
Синие лампы применяются в медицинских целях для лечения простудных заболеваний, травм и общего укрепления организма. Отражатель позволяет направлять свет на больной орган, не затрагивая здоровые органы. Маркируется как ИКЗС.
ИЛ с синим зеркальным покрытием
С рефлектором
Верхняя часть колбы покрывается зеркальным составом, который служит светоотражателем. Рефлектор создает направленный более мощный световой и тепловой поток. Угол падения света превышает 45⁰. Маркируется буквой R.
ИЛ с рефлектором
Керамическая инфракрасная лампа
Колба изготавливается из керамики. Такие устройства долговечнее и мощнее стеклянных. Они меньше подвержены механическим повреждениям. Вся энергия уходит на обогрев, световых лучей нет совсем. В качестве нити накаливания применяют нихром или фехраль. Керамические лампы влагостойкие. Часто применяются в террариумах и для обогрева молодняка. Особенно хороши для ночного обогрева.
Керамическая ИЛ
Проверка LED прожектора
Для начала надо определить, какой тип светодиода установлен в прожекторе. Могут быть два варианта:
- плата с мелкими SMD;
- один крупный желтый элемент.
Проверка светодиода на исправность производится исходя из его типа. Для платы с SMD применяется уже рассматривавшийся метод прозвонки мультиметром. Для крупных желтых образцов такой метод не годится, поскольку их напряжение питания составляет от 10 до 30 В, что для мультиметра слишком много. Проверить такое устройство самостоятельно можно только одним способом — используя заведомо работоспособный, исправный драйвер, соответствующий испытываемому светодиоду по рабочим параметрам.
Польза или вред
Инфракрасные волны помогают при:
- заживлении ран, язв, восстановлении поврежденных тканей;
- росте волос;
- снижению болей;
- внешнем виде кожи;
- здоровье суставов.
У животных ИК-обогрев способствует увеличению аппетита, следовательно, хорошие прибавки в весе. Также инфракрасное излечение быстро высушивает подстилки, что хорошо сказывается на чистоте. Не забудьте
С другой стороны, ИК-волны наносят существенный вред глазам человека. Поэтому при частом контакте с ИК-излучением стоит носить защитные очки.
Частый и долгий контакт с инфракрасными волнами может повредить кожный покров.
Схема приемного блока на ИК-излучении
Импульсы ИК-света, следующие с частотой 38 кГц излучаются инфракрасным светодиодом HL1. Управление одной кнопкой S1, которая подает на схему пульта питание. Пока кнопка нажата пультом излучаются инфракрасные импульсы. Схема приемного блока показана на рисунке 2. Он устанавливается внутрь телевизора, на него подается питание + 12V от источника питания телевизора, а катоды диодов VD2-VD9 соединяются с контактами кнопок модуля выбора программ УСУ-1-10. ИК-импульсы, излучаемые пультом, принимаются интегральным фотоприемником HF1 типа TSOP4838.
Данный фотоприемник широко применяется в системах дистанционного управления различной бытовой электронной аппаратурой. При приеме сигнала на его выводе 1 присутствует логический ноль, а при отсутствии принимаемого сигнала единица. Таким образом, когда кнопка пульта нажата на его выходе ноль, а когда не нажата — единица. TSOP4838 должен питаться напряжением 4.5-5.5V. и не более. Но, для управления модулем выбора программ телевизора нужно на кнопки транзисторного 8-фазного триггера подавать напряжение 12V. Поэтому, на микросхему D1 подается напряжение 12V, а на фотоприемник HF1 напряжение 4.7-5V через параметрический стабилизатор на стабилитроне VD10 и резисторе R4.
Согласующим уровни логических единиц каскадом служит транзистор VT1. При этом он инвертирует логические уровни. Напряжение с коллектора VT1 через цепь R3-C2 поступает на счетный вход счетчика D1, рассчитанный на прием положительных импульсов. Цепь R3-C2 служит для подавления ошибок от дребезга контактов кнопки S1 пульта управления. Счетчик D1 К561ИЕ9 представляет собой трехразрядный двоичный счетчик, со схемой десятичного дешифратора на выходе.
Он может находиться в одном из восьми состояний от 0 до 7, при этом логическая единица имеется только на одном, соответствующем его состоянию, выходе. На остальных выходах — нули.При каждом нажатии — отпускании кнопки пульта счетчик переходит на одно состояние вверх, при этом переключается логическая единица по его выходам. Если отсчет начался с нуля, то через восемь нажатий кнопки, на девятое, счетчик вернется в нулевое положение. И далее, процесс переключения логической единицы по его выходам повторится. ИК-светодиод LD271 можно заменить любым ИК-светодиодом. применимым для пультов дистанционного управления бытовой аппаратурой. Фотоприемник TSOP4838 можно заменить любым полным или функциональным аналогом.
Микросхему К561ИЕ9 можно заменить на К176ИЕ9 или зарубежным аналогом. Можно использовать микросхему К561ИЕ8 (К176ИЕ8), при этом будет 10 выходов управления. Чтобы ограничить их до 8-и нужно выход за номером «8» соединить со входом «R» (при этом вход «R» не соединять с общим минусом, как это на схеме). Диоды 1N4148 можно заменить любыми аналогами, например. КД521, КД522. Пульт питается от «Кроны». Помещен в футляр от зубной щетки. Монтаж — объемный на выводах микросхемы А1.
Схема приемника тоже собрана объемным монтажом и приклеена клеем «БФ-4» к деревянному корпусу телевизора изнутри. Для глазка фотоприемника я использовал отверстие для разъема для подключения головных телефонов (отверстие в телевизоре было пустое, закрытое заглушкой, самого разъема не было). Подбором R1 (рис.1) нужно пульт настроить на частоту фотоприемника. Это видно по наибольшей дальности приема. Если схема заинтересовала, но старой «Радуги» нет, её можно использовать и для переключения чего-либо более современного. К выходам микросхемы D1 можно через резисторы подключить транзисторные ключи, с электромагнитными реле на коллекторах или светодиодами мощных оптопар.
Особенности диодов, работающих в инфракрасном диапазоне
Инфракрасные светодиоды (сокращенно называются ИК диоды) — это полупроводниковые элементы электронных схем, которые при прохождении через них тока излучают свет, находящийся в инфракрасном диапазоне.
Мощные светодиоды (например, лазерный вид) инфракрасного спектрального диапазона производятся на базе квантоворазмерных гетероструктур. Здесь применяется лазер FP-типа. В результате чего мощность светодиодов стартует с отметки 10мВ, а ограничивающим порогом служит 1000мВ. Корпуса для данного рода изделий подходят как 3-pin-типа, так и HHL. Излучение в результате этого оказывается в спектре от 1300 до 1550нм.
Структура ИК-диода
В результате такой структуры лазерный мощный диод служит отличным источником излучения, благодаря чему его часто используют в волоконно-оптической системе передачи информации, а также во многих других сферах, о которых речь пойдет немного ниже.
Лазерный инфракрасный тип диода является источником мощного и концентрированного лазерного излучения. В его работе применяется, соответственно, лазерный принцип работы.
Мощные диоды (лазерный тип) имеют следующие технические характеристики:
Графическое отображение телесного угла в 1 ср
- такие светодиоды способны генерировать волны, находящиеся в диапазоне 0,74- 2000 мкм. Этот диапазон служит той гранью, когда излучение и свет имеют условное деление;
- мощности генерируемого излучения. Этот параметр отражает количество энергии в единицу времени. Такая мощность дополнительно привязывается к габаритам излучателя. Данный параметр измеряется в Вт с единицы имеющейся площади;
- интенсивность излучаемого потока в рамке сегмента объемного угла. Это достаточно условная характеристика. Она связана с тем, что с помощью оптических систем испускаемое диодом излучение собирается и потом направляется в требуемую сторону. Данный параметр измеряется в ВТ на стерадианы (Вт/ср).
В некоторых ситуациях, когда нет необходимости в наличии постоянного потока энергии, а достаточны импульсные сигналы, вышеописанное строение и характеристики позволяют увеличить мощность энергии, излучаемой элементом радиосхемы, в несколько раз.
Как проверить работоспособность
При работе с данным элементом электросхемы нужно знать, как проверить его работу. Так, как уже говорилось, визуально проверить наличие этого излучения можно с помощью видеокамер. Здесь можно оценивать работоспособность при помощи обычных видеокамер мобильных телефонов
Обратите внимание! Использование видеокамер является самым простым способом проверки
Такой ИК-элемент в дистанционном пульте проверяется легко, его просто следует направить на телевизор и нажать на кнопку. При исправности системы, диод вспыхнет и телевизор включится. А вот эмпирически проверить работоспособность подобного светодиода можно с помощью специального оборудования. Для этих целей подойдет тестер. Чтобы проверить светодиод, тестер следует подключить к его выводам и установить на пределе измерения mOm. После этого смотрим на него через камеру, к примеру через мобильный телефон. Если на экране виден луч света, значит все в порядке. Вот и вся проверка.
Проверяем выпрямительный диод и стабилитрон
Защитный диод, а также выпрямительный (включая силовой)или шоттки можно проверить при помощи мультиметра (или воспользоваться омметром), для этого переводим прибор в режим прозвонки так, как это показано на фотографии.
Режим мультиметра, при котором тестируются полупроводниковые выпрямительные диоды
Щупы измерительного прибора присоединяем к выводам радиоэлемента. При присоединении красного провода («+») к аноду, а черного («-») к катоду дисплей мультиметра (или омметра) отобразит значение порогового напряжения тестируемого диода. После того, как меняем полярность, прибор должен показать бесконечно большое сопротивление. В этом случае можно констатировать исправность элемента.
Если при обратном подключении мультиметр регистрирует утечку, значит, радиоэлемент «сгорел» и нуждается в замене.
Заметим, данную методику проверки можно использовать для тестирования диодов на генераторе автомобиля.
Тестирование стабилитрона осуществляется по сходному принципу, правда, такая проверка не позволяет определить, осуществляется ли стабилизация напряжения на заданном уровне. Поэтому нам потребуется собрать простую схему.
Тестирование с использованием регулируемого источника питания
Обозначения:
- БП – регулируемый блок питания (отображающий ток нагрузки и напряжение);
- R – токоограничительное сопротивление;
- VT – тестируемый стабилитрон или лавинный диод.
Принцип проверки следующий:
- производим сборку схемы;
- устанавливаем режим мультиметра, позволяющий измерить постоянное напряжение до 200 В;
Выбор необходимого режима для тестирования
- включаем блок питания и начинаем постепенно увеличивать величину напряжения, пока амперметр на блоке питания не покажет, что через цепь протекает ток;
- подключаем мультиметр, как указано на рисунке и измеряем величину напряжения стабилизации.