Атомные батарейки и зарядка по wi-fi: будущее рынка сохранения энергии

Оглавление

Технические преимущества литий-ионных АКБ:

  • токи заряда и разряда беспрецедентно высоки;
  • батарея теряет только порядка 2% от первоначального заряда в месяц (щелочные и кислотные аналоги — 20%);
  • быстрое восстановление после полного разряда;
  • отсутствует эффект памяти (не требует полной разрядки перед циклом заряда);
  • высокий электрохимический потенциал (энергетическая плотность);
  • допустима эксплуатация в широком диапазоне температур (от -40°C +50°C).
Электрические характеристики литий ионных аккумуляторов
Номинальная емкость, А*ч от 20 до 770
Номинальное напряжение, В 3,2
Удельная энергия по массе, Вт.ч/кг 90
Рекомендованные режимы эксплуатации
Непрерывный разряд, C 0,5
Ток заряда, C 0,5
Заряд при температуре, °С от 0 до +30
Разряд при температуре, °С от -20 до +30
Предельные рабочие режимы
Непрерывный разряд, C 3
Ток заряда, C 3
Максимальное напряжение заряда, В 3,9
Минимальное напряжение на аккумуляторе, В 2,5
Заряд при температуре, °С от 0 до +50
Разряд при температуре, °С от -40 до +50
Габаритные характеристики
Длина, мм
Ширина, мм
Высота, мм
Хранение при температуре, °С от 0 до +40
Ресурс, заряд/разряд при глубине разрядки до 80%, циклов >5000
Саморазряд полностью заряженного аккумулятора при 28-сут. хранении (+25°С), % в месяц <1

Мы предлагаем оптимальные варианты использования современных аккумуляторов для решения ваших проблем энергообеспечения. Ознакомьтесь с примерами наших работ, где наглядно представлены некоторые варианты наших решений.

Если остались вопросы — звоните нам. — ваш надежный энергетический партнер!

Полезная информация:

  • купить генератор тока
  • качество электроэнергии
  • стабилизаторы напряжения однофазные отзывы

Виды АКБ для источника бесперебойного питания

Аккумулятор для шуруповерта

Аккумуляторы для дома, используемые как резервное электроснабжение или в качестве основной коммуникации с альтернативным источником питания, в зависимости от своей конструкции бывают нескольких видов:

  1. Свинцово-кислотные АКБ – это блоки, в которых электролит расположен внутри металлической сетки, между которыми находятся синтетические волокна, пропитанные жидкостью. Данные батареи широко используются для источников бесперебойного питания, так как быстро заряжаются и выдают большее количество энергии. Но в связи с тем, что структура свинцовых пластин пористая, срок службы подобных деталей весьма ограничен и составляет не более пяти лет;
  2. Гелиевые аккумуляторы – это сложно устроенный агрегат, накапливающий и отдающий электрический ток, внутри которого вместо жидкого электролита расположен пропитанный гель. Он контактирует со стержнем, возникает электрохимическая реакция, но, благодаря свойствам геля, побочного эффекта в виде газа не возникает, поэтому эти батареи изготавливаются в герметичном корпусе.


Свинцово-кислотный АКБ

Таким образом, исходя из физико-химических свойств перечисленных АКБ, можно сделать вывод, что резервное электроснабжение лучше устраивать, используя гелиевые батареи, так как они обладают глубоким разрядом, что очень важно при необходимости обеспечить электричеством частный дом во время отключения основной линии. А для организации источника бесперебойного питания по альтернативной схеме лучше подходит АКБ, созданный по свинцово-кислотной технологии

Важно! В обоих типах батарей, так как выделения газа являются минимальными, корпус изготавливается герметичным, и обслужить его не получится. После выработки своего ресурса изделие подлежит утилизации согласно техническим требованиям


Гелиевый АКБ в герметичном корпусе

Многие собственники индивидуального жилья, выбирая аккумуляторы для дома, используемые при отключении электричества, в целях экономии пытаются заменить более дорогие гелиевые или свинцово-кислотные АКБ простыми батареями с жидким электролитом, которые предназначены для автомобилей. Конечно, их стоимость значительно ниже, но и функции, которые они выполняют, отличаются. Данный агрегат предназначен для максимальной выдачи тока определенного номинала и мощности, чтобы раскрутить стартер двигателя и выполнить его запуск. Он обладает хорошими характеристиками по короткому импульсу, но для длительной работы не подходит, так как быстро разряжается. К тому же его подзарядка занимает значительно больше времени, чем гелиевые или свинцово-химические АКБ.

Эффективность супермаховиков

Эффективность супермаховиков при всей их кажущейся архаичности достигает очень высоких значений. Их КПД доходит до 98 процентов, что даже не снилось обычным аккумуляторным батареям. Кстати, саморазряд таких батарей тоже происходит быстрее, чем потеря скорости хорошо сделанного маховика в вакууме и на магнитном подвесе.

Можно вспомнить старые времена, когда люди начали запасать энергию посредством маховиков. Самым простым примером являются гончарные круги, которые раскручивались и крутили, пока ремесленник работал над очередным сосудом.

Мы уже определись, что конструкция супермаховика достаточно проста, он имеет высокий КПД и при этом стоит относительно недорого, но есть у него один минус, который сказывается на эффективности его использования и стоит на пути массового внедрения. Точнее, таких минусов два.

Ленточный маховик.

Главным из них будет тот самый гироскопический эффект. Если на кораблях это полезное побочное свойство, то на автомобильном транспорте это будет очень сильно мешать и надо будет использовать сложные системы подвеса. Вторым минусом будет пожароопасность в случае разрушения. Из-за большой скорости разрушения даже композитные маховики будут выделять большое количество тепла за счет трения о внутреннюю часть бронекапсулы. На стационарном объекте это не будет большой проблемой, так как можно сделать систему пожаротушения, но на транспорте может создать очень много трудностей. Тем более, на транспорте риск разрушения выше за счет вибраций во время движения.

Проект резервного электроснабжения

В проект резервного электроснабжения входит вся документация, где учитывается суммарная мощность всех автономных источников. В систему резервного автономного энергоснабжения загородного дома могут входить и ультрасовременные мини-электростанции, и традиционные источники электричества. Чем больше предполагается источников питания сети, тем больше эффективность. Однако, в такой проект должны быть внесены все показатели мощности генераторов и емкости аккумуляторов.

Проектная мощность автономного резервного электроснабжения, включая инвертор, рассчитывается так – суммарная мощность работающих устройств плюсуется и умножается на 3. Это вызвано тем, что при запуске техника тянет максимальное количество энергии. Данный показатель учитывается для того, чтобы автономная сеть справлялась с максимально возможной нагрузкой по проектной мощности. В расчеты входят потребности электропитания питаемых схемой приборов:

  • активные нагревательные (плита и электрочайник, лампочки накаливания);
  • индуктивные (холодильник, стиральная машина, телевизор, микроволновка и пр.)

Их потребляемую мощность суммируют (по таблице или согласно прилагаемой инструкции) и добавляют 20-25% от максимальной величины, на тот случай, если все электроприборы будут работать одновременно. То есть, небольшая дача с минимальным освещением, телевизором и холодильником будет работать по схеме резервного электроснабжения загородного дома при мощности в 2 кВт. Если пользоваться электроинструментом и другими приборами, то прибавляем еще 5-6 кВт.

Сегодня наиболее распространенные автономные резервные источники электроснабжения:

  • станция бесперебойного питания;
  • дизельный генератор;
  • ветряной генератор;
  • бензиновый генератор;
  • инвертор.

1. Бензиновый электрогенератор считается одним из наиболее эффективных, хотя экономичным его не назовешь. Но для его достаточно при потребляемой мощности порядка 6 кВт. Такие источники энергии уместны там, где нет другой альтернативы, а бензин можно транспортировать без проблем. Например, если загородный дом стоит где-то у трассы или недалеко от бензоколонки.

Предлагаем ознакомиться Мыть пекинскую капусту или только оборвать верхний слой

Основные преимущества:

  • почти бесшумная работа;
  • хорошо запускается в зимний период;
  • может использоваться как резервный источник.

2. В большом домовладении потребление энергии довольно больше, особенно если много осветительных приборов и нет другого отопления, кроме электрокаминов. При потребляемой мощности более 6 кВт специалисты рекомендуют приобрести дизельный генератор. Однако тут тоже не обойдется без значительных финансовых вложений. Зато он работает практические в любых условиях.

3. Ветряной генератор, или в просторечии «ветряк», довольно эффективен, но он может быть установлен в местности, где всегда дуют довольно сильные ветра или тянут по гонному ущелью сезонные сквозняки.

4. Среди резервных источников электроснабжения нового поколения также нередко используются импульсные конденсаторы (ИКЭ). Прекрасная альтернатива другим системам автономного электропитания, практически инновационное оборудование, которое можно приобрести в готовом виде. Эти портативные модели предлагают улучшенные характеристики бесперебойного питания, которые могут работать автономно или в системе резервного электроснабжения. Они предполагают такой комплект:

  • преобразователь напряжения;
  • реле переключения от сети к аккумулятору;
  • зарядное устройство.

При подключении к схеме инвертора и автономных аккумуляторных батарей тоже получается мини-электростанция с достаточной мощностью.

Генератор «Dynapod»

В 1980 году Добровольцами по оказанию технической помощи (ВИТА, штат Мэриленд, США) было предложено устройство для выработки энергии, названное ими «Dynapod». Их идея заключалась в том, чтобы оборудовать такую бытовую технику, как миксер, шлифовальный станок, ручная дрель и деревообрабатывающий станок, маломощными (меньше 1 л.с. или 500 – 1 000 Вт) электромоторами, используемыми в короткие промежутки времени.

Так как большинство бытовых приборов используют в относительно постоянных условиях, где часто очень важен контроль скорости рабочего органа, педальные механизмы могут одновременно передать мускульную силу и отлично управлять скоростью там, где это необходимо. При этом можно также обеспечить комфортное сидячее место для оператора и освободить обе руки для управления устройством.

Газовые генераторы

Наиболее «экономным» вариантом резервного электроснабжения будет установка газового генератора. Затраты на генерацию одного киловатт/часа электроэнергии в данном случае составят примерно 0.45 м3 газа.

Газовый генератор

В качестве топлива может использовать как пропан-бутан в баллонах, так и природный газ из стационарной магистрали.

Но следует отметить, что схема подключения резервного источника питания данного типа будет на порядок сложнее, поскольку требует использования АВР и дополнительных согласований с газовыми службами.

Монтаж газовых генераторов производят, как правило, на внешних площадках, расположенных в пределах приусадебной площадки. Отдельное помещение и дополнительная звукоизоляция не обязательны, поскольку большинство рыночных моделей газовых генераторов имеют погодозащищённое исполнение и работают с минимальным уровнем шума.

Подключение газовой энергетической установки, питаемой из баллонов, может быть произведено без привлечения газовых служб, но для подключения к магистральной линии природного газа понадобится серьёзная доработка всего проекта дома (в плане газовой инфраструктуры).

Будущие разработки для систем SMES

Будущие разработки компонентов систем SMES могут сделать их более жизнеспособными для других приложений. В первую очередь развитие сверхпроводников. Физики конденсированного состояния всегда ищут сверхпроводники с более высокими критическими температурами. В 2013 году группа исследователей даже нашла сверхпроводник, работающий при комнатной температуре. Это было стабильно в течение пикосекунд, что делало его непрактичным, но, тем не менее, доказывало, что сверхпроводимость при комнатной температуре возможна. Потребность в охлаждении — это стоимость. Устранение этой стоимости за счет использования сверхпроводника при комнатной температуре или даже сверхпроводника, близкого к комнатной температуре, сделало бы систему SMES более жизнеспособной и более эффективной.

Критическая температура сверхпроводника также сильно коррелирует с критическим током. Вещество с высокой критической температурой также будет иметь высокий критический ток. Этот более высокий критический ток приведет к экспоненциальному увеличению накопителя энергии. Это значительно увеличит использование системы SMES.

Энергетическая емкость накопителей гравитационной энергии

Оценим по этой формуле энергетическую емкость массы воды, закачанной в цистерну емкостью 1000 литров, поднятую на 10 метров над уровнем земли (или уровнем турбины гидрогенератора). Будем считать, что цистерна имеет форму куба с длиной ребра 1 м. Тогда, согласно формуле в учебнике Ландсберга, A = 1000 кг · (9,8 м/с2) · 10,5 м = 102900 кг · м2/с2. Но 1 кг · м2/с2равен 1 джоулю, а переводя в ватт-часы, получим всего 28,583 ватт-часов. То есть, чтобы получить энергетическую емкость, равную емкости обычного электроаккумулятора 720 ватт-часов, нужно увеличить объем воды в цистерне в 25,2 раза. Цистерна должна будет иметь длину ребра примерно 3 метра. При этом ее энергетическая емкость будет равна 845 ватт-часам. Это больше емкости одного аккумулятора, но зато и объем установки существенно больше, чем размер обычного свинцово-цинкового автомобильного аккумулятора. Это сравнение подсказывает, что имеет смысл рассматривать не запасенную энергию в некоторой системе энергию саму по себе, а по отношению к массе или объему рассматриваемой системы.

Эффекты от накопления

  1. Использование накопителей позволит оптимизировать график нагрузки на наиболее дорогое генерирующее оборудование, что приведет к сокращению расхода углеводородного топлива, увеличит надежность электроснабжения.
  2. Накопители позволят создать энергетический резерв без избыточной работы генерирующих мощностей. Обеспечат спокойное прохождение ночного минимума и дневного максимума нагрузок.
  3. Исключаются перебои в питании, создается резерв на случай аварий. Электроэнергия становится дешевле.
  4. Появляется возможность накапливать излишки энергии от источников распределенной генерации и для индивидуальных резервов.

Электрические накопители энергии

Самый массовый вид энергии – электричество. Поэтому данная категория развивается наиболее активно, предлагая все новые и более совершенные решения. На данный момент самым распространенным аккумулятором электроэнергии является радиотехнический конденсатор. Он характеризуется высокой скоростью отдачи и накопления энергии, не ограничивая рабочие процессы окружающими условиями. Например, большинство моделей могут использоваться в условиях повышенных или крайне низких температур. И опять же, в целях оптимизации электрические накопители энергии наполняются специальными электролитическими элементами с высокой удельной емкостью.

Соленоид против тороида

Помимо свойств проволоки, конфигурация самой катушки является важным вопросом с точки зрения машиностроения . Есть три фактора, которые влияют на конструкцию и форму катушки — это: низкая устойчивость к деформации , тепловое сжатие при охлаждении и силы Лоренца в заряженной катушке. Среди них устойчивость к деформации имеет решающее значение не из-за каких-либо электрических эффектов, а потому, что она определяет, сколько конструкционного материала необходимо для предотвращения разрушения SMES. Для небольших систем SMES выбрано оптимистичное значение допуска к деформации 0,3%. Тороидальная геометрия может помочь уменьшить внешние магнитные силы и, следовательно, уменьшить размер необходимой механической опоры. Кроме того, из-за слабого внешнего магнитного поля тороидальные SMES могут быть расположены рядом с коммунальными предприятиями или потребителями.

Для небольших SMES обычно используются соленоиды , потому что они легко наматываются и не требует предварительного сжатия. В тороидальных SMES катушка всегда сжимается внешними обручами и двумя дисками, один из которых находится сверху, а другой — снизу, чтобы избежать поломки. В настоящее время нет необходимости в тороидальной геометрии для малых SMES, но по мере увеличения размера механические силы становятся более важными, и требуется тороидальная катушка.

В более старых концепциях крупных SMES обычно использовался соленоид с низким соотношением сторон примерно 100 м в диаметре, закопанный в землю. Крайне малым размером является концепция соленоидов micro-SMES для диапазона накопления энергии около 1 МДж.

Источник бесперебойного питания

Для обеспечения снабжения электрическим током жилого помещения без перерыва существует несколько видов ИБП, которые классифицируются по исполняемым функциям. К ним относятся:

  1. Комплекс агрегатов, призванных подключаться автоматически при нарушении снабжения сетевой электроэнергии. Во время аварийных ситуаций автоматика самостоятельно принимает решение и подключает резервный источник питания, снабжающий дом и основные бытовые приборы. При этом сетевая линия отключается до момента возникновения подачи энергии;
  2. Постоянный источник электроснабжения. Эти приборы призваны обеспечивать постоянное снабжение электричеством жилой дом, что создает независимую от центральной линии систему, которая способна генерировать и накапливать энергию, используя аккумуляторы.

В обеих указанных выше системах имеется аккумуляторная батарея, которая является неотъемлемой их частью и используется в качестве накопителя и хранилища тока.


ИПБ

Также ИБП можно классифицировать, основываясь на принципе генерации электричества. В каждом из агрегатов есть свой источник питания: в первом случае это АКБ, которая накапливает ток во время работы приборов от центральной сети, а во втором – в качестве генерирующей силовой установки могут выступать солнечные батареи, бензиновый или дизельный генератор или ветряк. Подобная система особенно выгодна в отдаленных участках, при отсутствии поблизости центрального снабжения электричеством.

Технические характеристики АКБ для дома

Как заряжать литий ионный аккумулятор

Многие производители предлагают батареи с индивидуальными показателями, но большинство из них относительно схожи и имеют следующие характеристики:

  1. Рабочее напряжение номиналом 12 Вольт. Это средний показатель наиболее распространённых изделий; бывают АКБ и 24 Вольта, но используются они весьма редко;
  2. Емкость батареи для резервирования электроэнергии бывает разной: от 50 до 500 А/час. При необходимости больших объемов питания такие АКБ можно соединить в параллельную схему. Определить номинальную емкость изделия можно по весу: чем он выше, тем больше в детали свинцовых пластин, соответственно, и электрически заряженного материала намного больше;
  3. Габариты и корпус. В большинстве моделей в качестве оболочки используется герметично запаянный пластик, который хорошо переносит перепады температур и не боится влаги, а также окисления внутренней среды;
  4. Максимальный цикл заряда и разряда детали. В зависимости от емкости и устройства АКБ, она бывает от 50 до 250 циклов. Выбирать батарею для использования в бесперебойном электропитании необходимо, учитывая этот параметр, так как чем выше данный показатель, тем дороже будет АКБ.

Это основные характеристики, которые присущи большинству моделей аккумуляторов, используемых в качестве накопителя энергии в системах бесперебойного или аварийного электроснабжения.

Особенности накопителя:

Этот накопитель является аналогом импортных накопителей, но при более низкой цене. В связке с солнечными батареями или ветрогенератором накопитель электроэнергии позволит эффективно накапливать «зеленую» энергию и использовать ее тогда, когда нужно потребителям, а не когда светит солнце или дует ветер.

Также эти устройства будут интересны бизнесу для автономного энергоснабжения различных мобильных офисов, мастерских, точек продаж и общественного питания. Для энергетических компаний этот продукт может быть полезен для создания локальных систем накопления энергии и сглаживания пиковых нагрузок на энергосети.

Также этот накопитель можно устанавливать на транспортных средствах, где необходимо автономное электропитание для приборов и оборудования, например: автодома, передвижные лаборатории и мастерские, передвижные точки продаж горячих напитков (кофе, чай и пр.), продуктов питания.

Для соединения множества проводов между различными цепями может применяться клеммный блок или, как еще называют – клеммная колодка, позволяющий обеспечить изолированное электрическое соединение контактов.

Где применяются супермаховики?

В первую очередь, Н.В. Гулия хотел использовать свое изобретение именно на транспорте. Даже было построено несколько образцов, которые проходили испытания. Несмотря на это, системы дальше испытаний не пошли. Зато применение такому способу накопления энергии нашлось в другой сфере.

Так в США в 1997 году компания Beacon Power сделала большой шаг в разработке супермаховиков для применения их в электростанциях на промышленном уровне. Эти супермаховики могли запасать энергию до 25 кВт⋅ч и имели мощность до 200 кВт. Строительство станции мощностью 20 МВт началось в 2009 году. Она должна была нивелировать пики нагрузки на электрическую сеть.

В России тоже есть подобные проекты. Например, под научным руководством самого Н. В. Гулиа компания Kinetic Power создала собственную версию стационарных накопителей кинетической энергии на базе супермаховика. Один накопитель может запасать до 100 кВт⋅ч энергии и обеспечивать мощность до 300 кВт. Система таких маховиков может обеспечивать выравнивание суточной неоднородности электрической нагрузки целого региона. Так можно полностью отказаться от очень дорогих гидроаккумулирующих электростанций.

Возможно использование супермаховиков и на объектах, где нужна независимость от электрических сетей и резервное питание. Эти системы имеют очень высокую скорость отклика. Она составляет буквально доли секунд и позволяет обеспечить действительно бесперебойное питание.

Такая идея «не зашла». Может получится с поездами?

Еще одним местом, где возможно применение Супермаховик, является железнодорожный транспорт. На торможение составов тратится очень много энергии и, если не тратить ее впустую, нагревая тормозные механизмы, а раскрутить маховик, накопленную энергию потом можно потратить на набор скорости. Вы скажете, что система на подвесе будет очень хрупкой для транспорта и будете правы, но в таком случае можно говорить и о подшипниках, так как запасать энергию надолго просто нет необходимости и потери от подшипников будут не такими большими на таком промежутке времени. Зато такой способ позволяет экономить 30 процентов энергии потребляемой поездом для движения.

Как видим, системы на супермаховиках имеют очень много плюсов и совсем немного минусов. Из этого можно сделать вывод, что они будут набирать популярность, становиться более дешевыми и массовыми. Это тот самый случай, когда свойства вещества и законы физики, знакомые людям с древних времен, позволяют придумать что-то новое. В итоге вы получили удивительным симбиозом механики и электрики, потенциал которого до конца еще не раскрыт.

Где применяются маховики?

Благодаря своей массивности и законам физики, которые сопровождают движение маховика, он нашел применение во многих современных механизмах — от транспорта до промышленности.

Самое простое применение заключается в сохранении скорости вращения вала, на котором установлен маховик. Это может пригодиться во время работы какого-нибудь станка. Особенно, в те моменты, когда он испытывает резкие нагрузки и надо не допустить падения частоты вращения. Получается такой своего рода демпфер.

Наверное, самым частым местом, где встречаются маховики, является двигатель внутреннего сгорания автомобиля. Он позволяет сохранить скорость вращения двигателя при выключении сцепления. Тем самым снижается воздействие на трансмиссию, так как переключение передачи происходит в то время, когда двигатель работает на оборотах выше оборотов холостого хода. Кроме этого, так достигается больший комфорт и плавность движения. Правда, на гоночных машинах маховик очень сильно облегчается для снижения веса и увеличения скорости, с которой раскручивается двигатель.

Маховик легкового автомобиля.

Также маховики часто используются для стабилизации движения. Происходит это за счет того, что колесо, которым и является маховик, при вращении создает гироскопический эффект. Он создает сильное сопротивление при попытке наклонить его. Этот эффект легко ощутить, например, раскрутив колесо велосипеда и попытавшись его наклонить, или взяв в руки работающий жесткий диск.

Такая сила мешает при управлении мотоциклом, заставляя прибегать к контррулению, особенно на большой скорости, но очень помогает, например, для стабилизации корабля во время качки. Также подвесив такой маховик и учитывая, что он всегда находится в одном положении относительно горизонта, можно фиксировать его отклонения от корпуса объекта и понимать его положение в пространстве. Применение таких свойств маховика актуально в авиации. Именно вращающийся маховик позволит определить положение фюзеляжа самолета в пространстве.

Примеры объектов «загородные дома 150-200м2»

Тип объекта: четыре двухэтажных дома, по 150-200 м2 каждый

Суточное потребление электроэнергии: 14-16 кВт*ч

Решение: Накопитель 4 кВт*ч

Год: 2018

Для чего владельцам накопитель?

Периодические отключения электросети в поселке, а также стремление жителей к отказу от шумных топливных генераторов и переходу к экологичным технологиям и ответственному потреблению.

Отзыв

Привлекла внимание политика компании: зеленая энергетика, разумное потребление, экономия и экологичность. Volts Battery настоящие подвижники российского производства в сегменте новых технологий

Приобрел накопитель себе в коттедж, пользуюсь с удовольствием, больше не отключается электричество, когда включаю слишком много бытовой техники, по моей рекомендации накопитель приобрел и мой брат. Соседи тоже активно интересуются накопителями.

Загородный дом в Волгоградской области

Тип объекта: двухэтажный дом, 200 м2

Суточное потребление электроэнергии: 15 кВт*ч

Решение: Накопитель 8 кВт*ч

Год: 2019

Для чего владельцам накопитель?

Частые отключения электроэнергии в поселке и скачки напряжения. Резерв электроэнергии на случай отключений.

Отзыв

Volts Battery – крутая штука. Я кропотливо и придирчиво изучал рынок накопителей электроэнергии, смотрел обзоры, читал отзывы. Остановился на Volts, меня зацепило, что это наша разработка. Стоимость немного смущала, но гарантия в десять лет убедила. Накопитель радует. Нравится работа через приложение, нравится простое управление, дизайн прикольный, то, что не шумит. Хотел бы со временем расширить ёмкость.

Загородный дом в поселке Рохма в Ленинградская области

Тип объекта: двухэтажное здание, 200 м2

Суточное потребление электроэнергии: 12 кВт*ч

Решение: Накопитель 12 кВт*ч

Год: 2018

Для чего владельцам накопитель?

Резерв электроэнергии из-за постоянных отключений сети. Частые отключения электроэнергии и скачки напряжения в сети заставляли владельцев ежедневно включать генератор. Синтез накопителя и генератора позволил снизить число включений генератора с тридцати до одного-двух в течение месяца.

Отзыв

У меня большой дом, три этажа, больше двухсот метров. Живу сам, а планирую оставить детям. Поэтому долгосрочные истории, вроде накопителя – для меня инвестиция в будущее. Я приобрел накопитель и солнечные панели. Теперь коплю электричество от солнца и жду – прослужит ли обещанные пятнадцать лет. Пока всё чётко.

Загородный дом из финского клеёного бруса Honka в Огоньках

Тип объекта: двухэтажное здание, 200 м2

Выделенная на участок мощность: 15 кВт*ч

Решение: Накопитель 2 кВт*ч, Мощность солнечных панелей: 1,62 кВт

Год: 2020

Для чего владельцам накопитель?

Для резервации электроэнергии на случай отключений, повышения энергоэффективности, а также накопления электроэнергии от солнечной станции.

Отзыв

Это функциональное и экологичное оборудование для обычных и загородных домов. Что приятно, продукт российский. Мы давно являемся их клиентами, ребята профессионалы своего дела, очень обстоятельно всё объясняют.

Будущее накопителей электроэнергии

Наиболее перспективным направлением следует признать создание сверхпроводящих индуктивных накопителей. Сверхпроводящие накопители энергии (СПИНЭ) запасают энергию в магнитном поле индукционной катушки, в которой ток циркулирует без потерь. Важнейшим преимуществом индуктивного накопителя является его быстродействие, достигающее единиц миллисекунд, что позволяет реагировать на самые внезапные аварии в энергосистеме.

В конструкции СПИНЭ можно условно выделить три основных конструктивных узла: собственно, магнитная система, криогенная система и система связи с внешней сетью, т.н. преобразователь-инвертор. Метод накопления электроэнергии с помощью СПИНЭ отличается экологической чистотой. Не используются вредные материалы, никаких химических реакций не происходит. Отходы производства отсутствуют.

Сверхпроводящие индуктивные накопители электромагнитной энергии представляют собой пример одного из уникальных технических использований явления сверхпроводимости. Это соленоиды, специально предназначенные для накопления и выдачи токов по требованию. Плотность энергии, запасенной в магнитном поле накопителя, на два порядка больше, чем в емкостном накопителе (конденсаторной батарее), а отдаваемые импульсные мощности могут достигать величин в десятки миллионов киловатт. Время вывода энергии из сверхпроводящего накопителя в зависимости от конструкции и запасенной энергии — от тысячных долей секунды до часов.

В настоящее время созданы сверхпроводящие индуктивные накопители на энергию 30 МДж. Обычно они отдают энергию в виде импульсов. Современные сверхпроводящие накопители имеют максимальный ток в импульсе 10000 А и напряжение 50 кВ, максимальную мощность 500 МВт при длительности импульса 5 мс.

Электроника, встроенная в деревья

Аккумулирование энергии из метаболизма в деревьях относится к биологическому способу.

Проект «Voltree» был разработан, как метод аккумулирования энергии из деревьев. Эти накопители используются для питания дистанционно управляемых датчиков и узловых сетей, как основы развернутой долгосрочной системы мониторинга лесных пожаров и погоды. Их веб-сайт утверждает, что срок службы такого устройства может быть ограничены лишь длительностью жизни самого дерева, где оно было установлено.

Недавно они развернули малую тестовую сеть в лесу Национального парка США.

Среди других источников энергии из деревьев – улавливание движения деревьев генератором.

Теоретический анализ этого источника показал некоторые перспективы для питания малых электронных устройств. Устройство, основанное на этой теории, было создано и успешно питало сенсорный узел в течение года.