Оглавление
Улучшение энергоэффективности
Нередко расчеты показывают, что энергоэффективность здания очень низка. Добиться ее улучшения, а значит, сократить расходы на отопление можно за счет улучшения теплоизоляции. Закон «Об энергосбережении» определяются методики улучшения энергоэффективности многоквартирных домов.
Основные методы
Пеноизол для утепления стен
- Повышение теплосопротивления стройконструкций. С этой целью может применяться облицовка стен, отделка технических этажей и перекрытий над подвальными помещениями теплоизоляционными материалами. Применение таких материалов дает повышение энергосбережения на 40%.
- Устранение в строительных конструкциях мостиков холода дадут «прирост» еще на 2–3%.
- Приведение площади остекленных конструкций в соответствие с нормативными параметрами. Может быть, полностью застекленная стена — это стильно, красиво, роскошно, но на теплосбережении сказывается далеко не лучшим образом.
- Остекление выносных строительных конструкций — балконов, лоджий, террас. Эффективность метода составляет 10–12%.
- Установка современных окон с многокамерными профилями и теплосберегающими стеклопакетами.
- Применение систем микровентиляции.
Жильцы тоже могут позаботиться о теплосбережении своих квартир.
Что могут сделать жильцы?
Хорошего эффекта позволяют добиться следующие способы:
- Установка алюминиевых радиаторов.
- Монтаж термостатов.
- Установка теплосчетчиков.
- Монтаж теплоотражающих экранов.
- Применение неметаллических труб в системах отопления.
- Монтаж индивидуального отопления при наличии технических возможностей.
Повысить энергоэффективность можно и другими способами. Один из самых эффективных — сокращение издержек на вентилирование помещения.
С этой целью можно использовать:
- Микропроветривание, устанавливаемое на окнах.
- Системы с подогревом поступающего извне воздуха.
- Регулирование подачи воздуха.
- Защита от сквозняков.
- Оснащение систем принудительной вентиляции двигателями с разными режимами работы.
Вычисления
Точное значение потерь тепла произвольным зданием вычислить практически невозможно. Однако давно разработаны методики приблизительных расчетов, дающих в пределах статистики достаточно точные средние результаты. Эти схемы вычислений часто упоминается как расчеты по укрупненным показателям (измерителям).
Наряду с тепловой мощностью часто возникает необходимость рассчитать суточный, часовой, годичный расход тепловой энергии или среднюю потребляемую мощность. Как это сделать? Приведем несколько примеров.
Часовой расход тепла на отопление по укрупненным измерителям вычисляется по формуле Qот=q*a*k*(tвн-tно)*V, где:
- Qот – искомое значение к килокалориях.
- q – удельная отопительная величина дома в ккал/(м3*С*час). Она ищется в справочниках для каждого типа зданий.
Удельная отопительная характеристика привязана к размерам, возрасту и типу здания.
- а – коэффициент поправки на вентиляцию (обычно равен 1,05 – 1,1).
- k – коэффициент поправки на климатическую зону (0,8 – 2,0 для разных климатических зон).
- tвн – внутренняя температура в помещении (+18 – +22 С).
- tно – уличная температура.
- V – объем здания вместе с ограждающими конструкциями.
Чтобы вычислить приблизительный годовой расход тепла на отопление в здании с удельным расходом в 125 кДж/(м2*С*сут) и площадью 100 м2, расположенном в климатической зоне с параметром GSOP=6000, нужно всего-то умножить 125 на 100 (площадь дома) и на 6000 (градусо-сутки отопительного периода). 125*100*6000=75000000 кДж, или примерно 18 гигакалорий, или 20800 киловатт-часов.
Чтобы пересчитать годичный расход в среднюю тепловую мощность отопительного оборудования, достаточно разделить его на длину отопительного сезона в часах. Если он длится 200 дней, средняя тепловая мощность отопления в приведенном выше случае составит 20800/200/24=4,33 КВт.
вычисления
Теория есть теория, но как на практике рассчитывается стоимость отопления загородного дома? Можно ли оценить смету расходов, не вдаваясь в глубины сложных теплотехнических формул?
Расход необходимого количества тепла
Инструкции для расчета предполагаемого количества необходимого тепла относительно просты. Ключевая фраза — приблизительное число: мы уделяем внимание точности, чтобы упростить вычисления, игнорируя многие факторы
- Базовое значение количества тепловой энергии составляет 40 Вт на кубический метр объема дома.
- 100 Вт на окно и 200 Вт на двери в наружных стенах добавляются к базовой мощности.
Затем полученное значение умножается на коэффициент, который определяется средней величиной потерь тепла по внешнему контуру здания. Для квартир в центре жилого дома принят фактор один: заметны только потери в фасаде. Три из четырех контурных стен квартиры граничат с теплыми комнатами.
Для угловых и оконечных квартир коэффициент 1,2-1,3 предполагается в зависимости от материала стены. Причины очевидны: две или даже три стены становятся внешними.
Наконец, в частном доме улица находится не только по периметру, но и снизу и сверху. В этом случае используется коэффициент 1,5.
В зоне холодного климата существуют особые требования к отоплению.
Рассчитаем, сколько тепла нужно коттеджу 10х10х3 метра в городе Комсомольске на Амуре, в Хабаровске.
Объем здания 10 * 10 * 3 = 300 м3.
Умножение громкости на 40 Вт / куб даст 300 * 40 = 12000 Вт.
Шесть окон и одна дверь 6 * 100 + 200 = 800 Вт. 1200 + 800 = 12800.
Частный дом Фактор 1.5. 12800 * 1,5 = 19200.
Хабаровский край. Нам нужно тепло в полтора раза: 19200 * 1,5 = 28800. В целом — на пике морозов нам нужен котел мощностью 30 киловатт.
Расчет затрат на отопление
Проще всего рассчитать потребление электроэнергии на отопление: при использовании электрокотла оно точно равно стоимости тепловой энергии. При непрерывном потреблении 30 киловатт в час мы потратим 30 * 4 рубля (примерная текущая цена киловатт-часа электроэнергии) = 120 рублей.
К счастью, реальность не так страшна: как показывает практика, средняя потребность в тепле составляет примерно половину от предполагаемой.
- Дрова — 0,4 кг / кВт / ч. Ориентировочный показатель потребления дров в нашем случае будет равен 30/2 (номинальную мощность, как мы помним, можно разделить пополам) * 0,4 = 6 кг в час.
- Расход лигнита на киловатт тепла — 0,2 кг. В нашем случае нормы расхода угля на отопление рассчитываются как 30/2 * 0,2 = 3 кг / час.
Лигнит является относительно недорогим источником тепла.
- Для дров — 3 рубля (стоимость килограмма) * 720 (часов в месяц) * 6 (почасовое потребление) = 12960 руб.
- Для угля — 2 рубля * 720 * 3 = 4320 рублей (читай другие).
Методика расчета
Для проведения расчета или перерасчета тепловой нагрузки на отопление зданий, уже эксплуатируемых или вновь подключаемых к системе отопления проводят следующие работы:
- Сбор исходных данные об объекте.
- Проведение энергетического обследования здания.
- На основании полученной после обследования информации производится расчет тепловой нагрузки на отопление, ГВС и вентиляцию.
- Составление технического отчета.
- Согласование отчета в организации, предоставляющей теплоэнергию.
- Заключение нового договора или изменение условий старого.
Сбор исходный данных об объекте тепловой нагрузки
Какие данные необходимо собрать или получить:
- Договор (его копия) на теплоснабжение со всеми приложениями.
- Справка оформленная на фирменном бланке о фактической численности сотрудников (в случае производственного зданий) или жителей (в случае жилого дома).
- План БТИ (копия).
- Данные по системе отопления: однотрубная или двухтрубная.
- Верхний или нижний розлив теплоносителя.
Все эти данные обязательны, т.к. на их основе будет производиться расчет тепловой нагрузки, так же вся информация попадет в итоговый отчет. Исходные данные, кроме того, помогут определиться со сроками и объемами работа. Стоимость же расчета всегда индивидуальна и может зависеть от таких факторов как:
- площадь отапливаемых помещений;
- тип системы отопления;
- наличия горячего водоснабжения и вентиляции.
Энергетическое обследование здания
Энергоаудит подразумевает выезд специалистов непосредственно на объект. Это необходимо для того, чтобы провести полный осмотр системы отопления, проверить качество ее изоляции. Так же во время выезда собираются недостающие данные об объекте, которые невозможно получить кроме как по средствам визуального осмотра. Определяются типы используемых радиаторов отопления, их месторасположение и количество. Рисуется схема и прикладываются фотографии. Обязательно осматриваются подводящие трубы, измеряется их диаметр, определяется материал, из которого они изготовлены, как эти трубы подведены, где расположены стояки и т.п.
В результат такого энергетического обследования (энергоаудита) заказчик получит на руки подробный технический отчет и на основании этого отчета уже и будет проихводиться расчет тепловых нагрузок на отопление здания.
Технический отчет
Технический отчет по расчету тепловой нагрузки должен состоять из следующих разделов:
- Исходные данные об объекте.
- Схема расположения радиаторов отопления.
- Точки вывода ГВС.
- Сам расчет.
- Заключение по результатам энергоаудита, которое должно включать сравнительную таблицу максимальных текущих тепловых нагрузок и договорных.
- Приложения.
- Свидетельство членства в СРО энергоаудитора.
- Поэтажный план здания.
- Экспликация.
- Все приложения к договору по энергоснабжению.
После составления, технический отчет обязательно должен быть согласован с теплоснабжающей организацией, после чего вносятся изменения в текущий договор или заключается новый.
Формулы расчёта
Количество теплоты, теряемой 1 м. куб. здания, с учётом температурной разницы в 1 градус (Q) можно получить по следующей формуле:
Этот расчёт не является идеальным, несмотря на то, что в нём учитывается площадь здания и размеры наружных стен, оконных проёмов и пола.
Есть другая формула, по которой можно выполнить расчёт фактической характеристики, где за основу вычислений берут годовой расход топлива (Q), среднюю температурный режим внутри здания(tint) и на улице (text) и отопительный период (z):
Несовершенство этого вычисления в том, что не в нём не отражена разница температур в помещениях здания. Наиболее удобной считается система расчёта, предложенная профессором Н. С. Ермолаевым:
Преимущество использования этой системы расчёта в том, что в ней учитываются проектировочные характеристики здания. Используется коэффициент, который показывает соотношение размера остекленных окон по отношению к площади стен. В формуле Ермолаева применяются коэффициенты таких показателей, как теплопередача окон, стен, потолков и полов.
Улучшение энергоэффективности частного дома
Теплый дом Для повышения энергоэффективности многоквартирного дома задача реальная, но требует огромных затрат. В результате нередко она остается так и не решенной. Сократить теплопотери в частном доме значительно проще. Этой цели можно добиться разными методами. Подойдя к решению проблемы комплексно, нетрудно получить превосходные результаты.
В первую очередь затраты на отопление складываются из особенностей системы отопления. Частные дома крайне редко подключаются к центральным коммуникациям. В большинстве случаев они отапливаются индивидуальной котельной. Установка современного котельного оборудования, отличающегося экономичностью работы и высоким КПД, поможет сократить расходы на тепло, что не скажется на комфорте в доме. Лучший выбор — газовый котел.
Однако газ не всегда целесообразен для отопления. В первую очередь это касается местностей, где еще не прошла газификация. Для таких регионов можно подобрать другой котел исходя из соображений дешевизны топлива и доступности эксплуатационных расходов.
Не стоит экономить на дополнительном оборудовании, опциях для котла. Например, установка только одного терморегулятора способна обеспечить экономию топлива около 25%. Смонтировав ряд дополнительных датчиков и приборов можно добиться еще более существенного снижения расходов. Даже выбирая дорогостоящее, современное, «интеллектуальное» дополнительное оборудование, можно быть уверенным, что оно окупится в течение первого отопительного сезона. Сложив эксплуатационные затраты в течение нескольких лет, можно наглядно увидеть выгоды дополнительного «умного» оборудования.
Большинство автономных систем отопления строится с принудительной циркуляцией теплоносителя. С этой целью в сеть встраивается насосное оборудование. Без сомнения, такое оборудование должно быть надежным, качественным, но подобные модели могут быть весьма и весьма «прожорливыми». Как показала практика, в домах, где отопление имеет принудительную циркуляцию, 30% затрат на электроэнергию приходится именно на обслуживание циркуляционного насоса. При этом в продаже можно найти насосы, имеющие класс А энергоэффективности. Не будем вдаваться в подробности, за счет чего достигается экономичность такого оборудования, достаточно только сказать, что установка такой модели окупится уже в течение первых трех-четырех отопительных сезонов.
Электрический радиатор
Мы уже упоминали об эффективности использования терморегуляторов, но эти приборы заслуживают отдельного разговора. Принцип работы термодатчика очень прост. Он считывает температуру воздуха внутри обогреваемого помещения и включает/отключает насос при понижении/повышении показателей. Порог срабатывания и желаемый температурный режим устанавливается пользователем. В результате жильцы получают полностью автономную систему отопления, комфортный микроклимат, существенную экономию топлива за счет более продолжительных периодов отключения котла
Важное преимущество использования термостатов — отключение не только нагревателя, но и циркуляционного насоса. А это сохраняет работоспособность оборудования и дорогостоящие ресурсы
Существуют и другие способы повышения энергоэффективности здания:
- Дополнительное утепление стен, полов с помощью современных теплоизоляционных материалов.
- Установка пластиковых окон с энергосберегающими стеклопакетами.
- Защита дома от сквозняков и т. д.
Все эти методы позволяют увеличить фактические теплохарактеристики здания относительно расчетно-нормативных. Такое увеличение — это не просто цифры, а составляющие комфорта дома и экономичности его эксплуатации.
Удельная тепловая характеристика
При одинаковом строительном объеме удельная тепловая характеристика здания возрастает с увеличением общей площади ее наружных ограждений. Отсюда следует, что при одинаковом строительном объеме удельная тепловая характеристика будет уменьшаться по мере приближения внешней формы здания к форме куба, который, как известно, имеет наименьшую ( после шара) наружную поверхность.
Величина удельной тепловой характеристики является эксплуатационным показателем проектируемого здания — чем она выше, тем больше затраты на отопление. Поэтому исходя из экономически целесообразного уровня теплозащиты зданий следует не допускать увеличения удельных тепловых характеристик выше существующих норм.
Еще большее влияние на затраты по отоплению зданий оказал непрерывный рост их удельных тепловых характеристик, являющийся следствием увеличения удельного веса за-иолнений световых проемов в суммарной площади наружных ограждающих конструкций, а также уменьшения сопротивлений теплопередаче этих конструкций и другими причинами. Во многих случаях эксплуатационные затраты на отопление этих зданий становятся равными стоимости системы отопления всего через 1 5 — 2 года.
Величина удельной тепловой характеристики является эксплуатационным показателем проектируемого здания — чем она выше, тем больше затраты на отопление. Поэтому, исходя из экономически целесообразного уровня теплозащиты зданий, следует не допускать увеличения удельных тепловых характеристик выше существующих норм.
Существуют две методики определения издержек на отопление зданий. Если решают задачи, не связанные непосредственно с теплотехническими свойствами ограждающих конструкций здания ( например, объемно-планировочные решения, включая вопросы блокирования зданий; определение технической возможности снабжения теплотой, вырабатываемой в действующей котельной, дополнительных зданий и др.) или эти свойства к моменту расчетов еще не определены, то Сот рассчитывают, исходя из удельной тепловой характеристики здания дул, равной теплопотерям 1 м здания ( Вт) при разности температур внутреннего и наружного воздуха, равной 1 С.
Основная масса тепла и топлива расходуется в городском ( поселковом) хозяйстве на отопление и вентиляцию жилых и общественных зданий. Расход на эти нужды постоянно возрастает в связи с систематическим улучшением жилищных условий населения и развитием всех отраслей сферы обслуживания, следствием чего является увеличение удельной, на 1 жителя, отапливаемой кубатуры зданий различного назначения ( см. § 2 и прил. Существенное значение имеют и изменения удельных тепловых характеристик зданий.
При одинаковом строительном объеме удельная тепловая характеристика здания возрастает с увеличением общей площади ее наружных ограждений. Отсюда следует, что при одинаковом строительном объеме удельная тепловая характеристика будет уменьшаться по мере приближения внешней формы здания к форме куба, который, как известно, имеет наименьшую ( после шара) наружную поверхность.
Окна с помещенной между рамами свертывающейся шторой.| Фрагмент окна с поворотными подъемно-опускными жалюзи. |
Большое технико-экономическое значение имеет правильная оценка остекления здания. Необходимо учитывать, что с увеличением остекления наружных ограждений резко возрастает удельная тепловая характеристика здания, так как термическое сопротивление остекленных проемов почти в 3 раза меньше термического сопротивления наружной стены. В летние месяцы большое остекление является основной причиной перегрева помещений, что отрицательно сказывается на самочувствии человека и на его работоспособности.
Расчет теплопотерь ограждениями зданий не сложен, но требует много времени. Поэтому нередко, например для разработки проектных заданий и для определения тепловой мощности котельных, пользуются методом приближенного определения теплопотерь по удельным тепловым характеристикам зданий.
За внутреннюю температуру в формуле принимают такую, ко-которая характерна для большинства помещений здания. Эта величина показывает, насколько правильно запроектировано здание в теплотехническом отношении. Зависит она от принятых сопротивлений теплопередаче ограждений и, в частности, от площади остекления, а также объема и формы здания, причем с увеличением объема здания и уменьшением отношения его внешней поверхности к объему удельная тепловая характеристика уменьшается.
Удельная тепловая характеристика
Инженеры-строители, работающие в проектных организациях, должны твердо помнить, что на удельную тепловую характеристику здания оказывают влияние его объем, форма, этажность, требуемый температурный режим, воздухообмен, положение в системе застройки и особенно размер остекления.
Внутреннюю температуру в здании t B принимаем равной 18е С; по приложению 3 удельная тепловая характеристика здания qo составляет 0 28 ккал / ч м3 град.
Ориентировочно тепловые потери можно подсчитать по упрощенной формуле введением в расчеты укрупненного измерителя — удельной тепловой характеристики здания, представляющей собой тепловой поток в ваттах ( вт), приходящийся на 1 ж3 здания ( по наружному обмеру) при разности температур внутреннего и наружного воздуха в один градус.
Наличие такой таблицы позволяет при детальном расчете теплопотерь здания сопоставить полученную для этого здания удельную тепловую характеристику с табличными значениями характеристик для аналогичных зданий и при значительном расхождении с табличными данными-искать причину такого несоответствия.
Теплотехническая оценка архитектурно-строительного проекта здания и сравнение его с другими в тепловом отношении производятся также на основании удельной тепловой характеристики.
Тепло, теряемое зданием, можно определить и приближенно без эталонного расчета ограждающих поверхностей помещений, пользуясь так называемой удельной тепловой характеристикой.
Теплонапряженность горячих цехов qa. |
При ориентировочных подсчетах расходов тепла на отопление и вентиляцию для холодного периода года часто можно пользоваться укрупненными показателями — удельными тепловыми характеристиками для отопления q0 и вентиляции qB здания, которые даются в справочной литературе в зависимости от назначения и строительного объема V здания.
Нормы удельных расходов условного топлича на выработку тепла. |
При определении расходов тепла и топлива для зданий с внутренней температурой, отличающейся от 18 С, и с другими удельными тепловыми характеристиками ( q0) к данным, приведенным в приложении, должны быть применены поправочные коэффициенты.
Так, в послевоенные годы, в особенности во 2 — й половине 50 — х годов, в нашем жилищном строительстве наметилась ярко выраженная тенденция к увеличению удельных тепловых характеристик зданий во всем диапазоне их этажности и кубатуры.
Кобщ — общий объем отапливаемого здания, м; t, — температура воздуха в здании, С; ta — наружная температура воздуха, С; х — удельная тепловая характеристика здания для временного обогрева, кДж / ( ч-м 3 — С) ( можно принять х — 0 60); с — удельная теплоемкость воздуха, кДж / ( кг.
Отопительные характеристики жилых зданий, расположенных в климатических районах с расчетной наружной температурой для отопления т — 30 С, приведены в табл. 1.7. Для климатических районов с другой расчетной температурой наружного воздуха к указанным в табл. 1.7 значениям удельных характеристик вводится поправочный коэффициент, приведенный в табл. 1.8. В табл. 1.9 приведены удельные тепловые характеристики, а также теплопотери и кубатура наиболее распространенных типовых жилых зданий.
Отопительные характеристики жилых зданий, расположенных в климатических районах с расчетной наружной температурой для отопления до — 3 ( УС, приведены в табл. XVI.7. Для климатических районов с другой расчетной температурой наружного воздуха к указанным в табл. XVI.7 значениям удельных характеристик вводится поправочный коэффициент, приведенный в табл. XVI.8. В табл. XVI.9 приведены удельные тепловые характеристики, а также теплопотери, кубатура наиболее распространенных типовых жилых зданий.
Удельную тепловую характеристику, вычисляемую после расчета тешюпотерь, используют для теплотехнической оценки конструктивно-планировочных решений здания, сравнивая ее со средними показателями для аналогичных зданий. Величина удельной тепловой характеристики определяется прежде всего размерами световых проемов по отношению к общей площади наружных ограждений ( долей остекления), так как коэффициент теплоотдачи заполнений световых проемов значительно выше коэффициента теплопередачи других ограждений. Кроме того, она зависит от объема и формы зданий.
Что это за показатель
Удельная отопительная характеристика зданий показывает своим значением максимальный теплопоток на нужды обогрева постройки в условиях разности наружной и внутренней температур в один градус Цельсия.
Сама величина – это важный показатель энергоэффективности постройки, её отклонения от нормативных величин определяют уровень энергетической эффективности.
Зачастую удельная отопительная характеристика жилых зданий рассчитывается согласно нормам СНиП «Тепловая защита зданий», а также строительными нормами.
Необходимый СНиП
Методика расчета саморегулируемых организаций
Удельная отопительная характеристика жилых зданий рассчитывается согласно формуле:
Где:
- a –приравнивается к 1,66 ккал/м2 чµС,83 для n=6 – для построек которые введены в эксплуатацию до 1958 года;
- а – равно 1,72 ккал/м2,5 чµС для n=6 – для построек введенных в жилой фонд после 1985 года;
- V – объем здания, измеряется в кубических метрах;
- µ — поправочный коэффициент температуры наружного воздуха, находится в пределах 0,8 – 2,5.
Это уравнение аппроксимация, которую получили благодаря обработке статистических данных. Как можно заметить для построек, которые сданы в фон жилья до 1958 и после 1985 годов, берется одинаковое значение n=6. Отметим, что во втором случае значение больше чем в первом.
Здание «сталинка»
Многие специалисты предпочитают брать значения расположенные в строительных нормах.
Фактический показатель
Фактическая удельная тепловая отопительная характеристика здания находится по следующей формуле:
Где:
- Q – сумма за фактическое теплопотребление на нужды вентиляции и отопления за весь отопительный сезон; (См. также статью Когда заканчивается отопительный сезон.)
- tВ – внутренняя температура;
- tH – наружная температура;
- zф – фактическая длительность периода отопления в базовом году, измеряется в сутках;
- knm – коэффициент показывающий на потери тепла трубопроводами находящимися в помещениях которые не обогреваются. Обычно принимается 1,05, но в зависимости от случая может быть меньше, берется из СНиПа «Вентиляция отопление и кондиционирование».
СНиП для расчетов
Преимущество этого метода заключается в легком определении значений параметров, из которых состоит формула,инструкция их определения не требуется.
Недостатком является то, что уравнение не берет во внимание неоднородность внутренних температур воздушных масс внутри помещений разного назначения во всем здании. Если нет раздельного учета расходов тепла, то его можно определить по:. Если нет раздельного учета расходов тепла, то его можно определить по:
Если нет раздельного учета расходов тепла, то его можно определить по:
- Теплопотерям через внешние ограждающие конструкции;
- Проекту;
- Укрупненным значениям площади встроенных помещений к площади всего строения или же кубатуре помещений пропорционально кубатуре строения.
Формула Ермолаева
Известный в кругах теплоэнергетиков профессор Ермолаев, предложил свою формулу, благодаря которой находятся удельные отопительные характеристики зданий, отметим, что её можно найти и своими руками:
Где:
- Р – периметр постройки, размерность его в метрах;
- А – площадь дома, измеряется в квадратных метрах;
- Н – высота здания в метрах;
- g0 – коэффициент остекленения;
- kок – теплопередача окон;
- kст – тоже но стен;
- kпот – теплопередача потолков;
- kпол – тоже но полов.
Пример одного расчета
Вашему вниманию приведем расчет формулы, которой пользуются саморегулирующие организации. Удельная тепловая характеристика здания для отопления дома, построенного в 1950 году, в таком случае определяется так:
Заключение
Расчетно-нормативная и фактическая удельная тепловая характеристика — важные параметры, используемые специалистами-теплотехниками. Не стоит думать, что эти цифры не имеют никакого практического значения для жильцов частных и многоквартирных домов. Дельта между расчетными и фактическими параметрами — основной показатель энергоэффективности дома, а значит, и экономичности обслуживания инженерных коммуникаций.
Для теплотехнической оценки конструктивно-планировочных решений и для ориентировочного расчета теплопотерь зданий пользуются показателем — удельная тепловая характеристика здания q.
Величина q, Вт/(м 3 *К) [ккал/(ч*м 3 *°С)], определяет средние теплопотери 1 м 3 здания, отнесенные к расчетной разности температур, равной 1°:
где Q зд — расчетные теплопотери всеми помещениями здания;
V — объем отапливаемой части здания до внешнему обмеру;
t п -t н — расчетная разность температур для основных помещений здания.
Величину q определяют в виде произведения:
где q 0 — удельная тепловая характеристика, соответствующая разности температур Δt 0 =18-(-30)=48°;
β t — температурный коэффициент, учитывающий отклонение фактической расчетной разности температур от Δt 0 .
Удельная тепловая характеристика q 0 может быть определена по формуле:
Эту формулу можно преобразовать в более простое выражение, пользуясь приведенными в СНиП данными и приняв, например, за основу характеристики для жилых зданий:
где R 0 — сопротивление теплопередаче наружной стены;
η ок — коэффициент, учитывающий увеличение теплопотерь через окна по сравнению с наружными стенами;
d — доля площади наружных стен, занятая окнами;
ηпт, ηпл -коэффициенты, учитывающие уменьшение теплопотерь через потолок и пол по сравнению с наружными стенами;
F c — площадь наружных стен;
F п — площадь здания в плане;
V — объем здания.
Зависимость удельной тепловой характерношки q 0 от изменения конструктивно-планировочного решения здания, объема здания V и относительного к R 0 тр сопротивления теплопередаче наружных стен β, высота здания h, степени остекления наружных стен d, коэффициента теплопередачи окон k он и ширины здания b.
Температурный коэффициент β t равен:
Формула соответствует значениям коэффициента β t , которые обычно приводятся в справочной литературе.
Характеристикой q удобно пользоваться для теплотехнической оценки возможных конструктивно-планировочных решений здания.
Если в формулу подставить значение Q зд, то ее можно привести к виду:
Величина тепловой характеристики, зависит от объема здания и, кроме того, от назначения, этажности и формы здания, площади и теплозащиты наружных ограждений, степени остекления здания и района строительства. Влияние отдельных факторов на величину q очевидно из рассмотрения формулы. На рисунке показана зависимость qо от различных характеристик здания. Реперной точке на чертеже, через которую проходят все кривые, соответствуют значения: q о =О,415 (0,356) для здания V=20*103 м 3 , шириной b=11 м, d=0,25 R o =0,86(1,0), k ок =3,48 (3,0); длиной l=30 м. Каждая кривая соответствует изменению одной из характеристик (дополнительные шкалы по оси абсцисс) при прочих равных условиях. Вторая шкала на оси ординат показывает эту зависимость в процентах. Из графика видно, что заметное влияние на qo оказывает степень остекленности d и ширина здания Ь.
Величины q для зданий различных назначений и объемов приводятся в справочных пособиях. Для гражданских зданий эти значения изменяются в следующих пределах:
Потребность в тепле на отопление здания может заметно отличаться от величины теплопотерь, поэтому можно вместо q пользоваться удельной тепловой характеристикой отопления здания qот, при вычислении которой по верхней формуле числитель подставляют не теплопотери, а установочную тепловую мощность системы отопления Q от.уст.
Q от.уст =1,150*Q от.
где Q от — определяется по формуле:
Q от =ΔQ=Q orp +Q вент +Q тexн.
где Q orp — потери тепла через наружные ограждения;
Q вент — расход тепла на нагревание воздуха, поступающего в помещение;
Q тexн — технологические и бытовые тепловыделения.
Значения qот могут быть использованы для расчета потребности в тепле на отопление здания по укрупненным измерителям по следующей формуле:
Расчет тепловых нагрузок на системы отопления по укрупненным измерителям используют для ориентировочных подсчетов при определении потребности в тепле района, города, при проектировании центрального теплоснабжения и пр.
Источник