Оглавление
Подключение ленты LED
Для подключения диодной ленты внутри квартиры либо частного жилого дома нужна покупка блока питания, имеющего соответствующий защитный класс от влаги и пыли. Как правило, применяются блоки, чьё выходное электронапряжение составляет 12 В, в более редких случаях — 24 В. Реже всего встречаются мало распространённые выпрямители с электронапряжением 36 В. Ещё есть диодные ленты, которые подключаютя к электросети 220 в. Но им также нужно постоянное электронапряжение, а не переменное.
Ещё в случае подключения ленты LED возможно использование диммера, позволяющего регулировать интенсивность света. Это способствует расслаблению дома в вечернее время, прежде всего — в случае, если в рабочем помещении (цех, офис) всё время присутствует яркий свет, вызывающий усталость глаз.
Какой ток светодиода
По принципу действия светодиоды очень похожи на обычные выпрямительные диоды. Только конструктивное исполнение другое. И первое существенное отличие — это полупроводниковый материал. В случае выпрямительных диодов это чаще кремний. Светодиоды же изготавливаются из разных полупроводников, в зависимости от цвета которым они светятся. Материал определяет прямое напряжение, то есть напряжение, которое прикладывается к светодиоду при прохождении прямого тока через него.
Прямое напряжение — напряжение, равное или превышающее то, при котором ток (прямой ток) начинает течь через диод, и он начинает светиться.
Прямое напряжение и прямой ток
Каждый диод имеет разное прямое напряжение, что важно при выборе ограничительного резистора. Прямое напряжение зависит от таких факторов, как:
Прямое напряжение зависит от таких факторов, как:
- температура окружающей среды,
- величина протекающего тока (чем она выше, тем большее напряжение прикладывается к диоду),
- используемого производителем полупроводникового материала.
Как подключить светодиод
Обеспечение работоспособности излучающих свет диодов, предполагает не только наличие источника питания, но и строгого соблюдения схемы подключения.
К 1,5 В
Показатели рабочего напряжения светоизлучающих диодов, как правило, превышают 1,5 В, поэтому сверх яркие светодиоды нуждаются в источнике питания не менее 3,2-3,4 В. При подключении применяется преобразователь напряжения в виде блокинг-генератора на резисторе, транзисторе и трансформаторе.
Запитываем светодиод к 1,5 ватт
Использование упрощенной схемы, лишенной стабилизатора, позволяет обеспечивать непрерывную работоспособность светоизлучающих диодов до снижения напряжения в элементе питания до показателей 0,8 В.
К 5 В
Подключение светодиода к элементу питания с номинальными токовыми показателями на уровне 5 В предполагает подсоединение резистора, имеющего сопротивление в пределах 100-200 Ом.
Параллельное подключение светодиодов
Если подключение в 5 вольт необходимо для установки пары диодов, то в электрическую цепь последовательным способом включается резистор ограничительного типа с сопротивлением не более 100 Ом.
К 9 В
Батарейка типа «Крона» обладает относительно небольшой емкостью, поэтому такой источник питания очень редко применяется для подключения достаточно мощных светодиодов. Согласно максимальному току, не превышающему 30-40 мА, чаще всего осуществляется последовательное подсоединение трёх светоизлучающих диодов, имеющих рабочий ток 20 мА.
К 12 В
Стандартный алгоритм подключения диодов к элементу питания на 12 В включает в себя определение типа блока, нахождение номинального тока, напряжения и потребляемой мощности, а также подсоединение к выводам с обязательным соблюдением полярности. В этом случае резистор размещается на любом участке электрической цепи.
Контакты на участках подсоединения излучающих свет диодов надежно запаиваются, а после штатной проверки работоспособности — изолируются специальной лентой.
К 220 В
При использовании источников питания 220 В, в обязательном порядке ограничивается ток, который будет протекать через световой диод, что предотвратит перегрев и выход светоизлучающего прибора из строя. Также необходимо понизить уровень обратного светодиодного напряжения с целью предупреждения пробоя.
Схема подключения светодиодов к 220 вольт
Ограничение уровня тока в условиях переменного напряжения осуществляется резисторами, конденсаторами или катушками индуктивности. Питание диода при постоянном напряжении предполагает использование исключительно резисторов.
Главная ошибка
Следует упомянуть популярную ошибку, которая допускается, когда сращивают 2 отрезка. Она заключается в последовательном их подключении. Некоторые думают, что достаточно прямого соединения 2-х концов ленты для получения требуемой длины. Такая коммутация является неправильной, т. к. подключение лент должно быть параллельным.
В практическом отношении данная ошибка приводит к увеличению контурного сопротивления. В конце цепи диоды будут давать крайне тусклый свет либо вовсе никакого. В таком случае на начальные ленточные фрагменты будет идти излишнее электронапряжение. Оно быстро вызывает поломку элементов освещения.
Ещё высокое электронапряжение ведёт к повышению температуры ленты с диодами. Это также нельзя назвать преимуществом. При неправильном соединении 2-х ленточных отрезков они быстро изнашиваются и значительно сокращается время их эксплуатации.
Способы подключения ламп 220 В
Современные производители выпускают две разновидности лед-ламп – на 220 и 12 вольт. Первые получили большее распространение в быту – так как удобны и привычны в применении. Чтобы включить их в схему, достаточно просто монтировать их стандартным способом. Так, в исполнении стандартной лампочки светильник вкручивается цоколем в соответствующий патрон. При этом для его работы не требуется никакого дополнительного оборудования.
Существует 3 основных способа, как подключить светодиодный светильник к 220 В – это:
Последовательный.
Метод применяется, когда возникает необходимость в экономии проводника. При этом должно соблюдаться условие, что в цепи будет находиться не более 6 лампочек. Недостаток заключается в том, что при выходе из строя одного светильника остальные также перестанут работать. Для поиска неисправности придется проверять каждый.
Для подключения по этому способу к 1-му прибору подводится фазный провод от выключателя. Затем от 1-го ведется проводник ко 2-му и т. д. – по последовательной схеме. В завершении к заключительному светильнику в цепи проводится нулевая жила от распредкоробки.
Пример схемы последовательного, параллельного и ошибочного подключения лед-лампочек Источник svetilov.ru
Параллельный.
Стандартный и наиболее применимый способ подключения. Все лампочки выдают светимость, соответствующую гарантии производителя. Однако при таком методе расход проводников значительно выше, чем в выше описанном.
При подключении по данной схеме протягивается кабель, идущий от распредкоробки через выключатель. При этом подсоединение приборов освещения осуществляется поочередно. Таким образом, к каждому из них подходит и фаза, и ноль. Если испортится один светильник, остальные продолжат работать в штатном режиме.
Лучевой.
Метод является альтернативным параллельному. Применяется, когда требуется сэкономить на проводнике, но при этом сохранить принцип параллельности электросхемы. Его суть состоит в том, что в позицию, центрально расположенную по отношению к подключаемым светильникам, подводится кабель от распредщитка.
Далее к каждому осветительному прибору подводятся отдельно нулевые и фазные жилы. При этом соединение всех проводов в одной точке осуществляется путем скрутки или специальной клеммной коробки.
Распределительная клеммная коробка для соединения проводки Источник ytimg.com
Как определить полярность светодиода?
Самостоятельное определение светодиодной полярности осуществляется несколькими несложными методами:
- посредством измерений;
- по результатам визуальной оценки;
- при подключении к источнику питания;
- в процессе ознакомления с технической документацией.
К числу самых распространенных вариантов определения полярности светоизлучающих диодов относятся первые три способа, которые должны выполняться с соблюдением стандартной технологии.
Использование тестирующих устройств
С целью максимально точного определения светодиодной полярности, щупы мультиметра подключаются непосредственно к диоду, после чего отслеживаются показания тестера. При высвечивании на шкале «бесконечного» сопротивления, провода щупов меняются местами.
Если тестер показывает какие-либо показатели конечного значения в условиях замеров сопротивления проверяемых светоизлучающих диодов, то можно быть уверенным в подключении прибора с соблюдением вида полярности, а данные о расположении «плюса» и «минуса» являются точными.
Проверка светодиодов мультиметром
Наиболее удобно выполнять замеры мультиметром цифрового типа, имеющим оптимальные показатели разрядности шкалы на дисплее.
Визуальное определение полярности
Несмотря на множество существующих в настоящее время видов конструкций светодиодного оборудования, наиболее широкое распространение получили излучающие свет диоды, заключенные в цилиндрический корпус D от 3,5 мм.
Наиболее мощные диоды сверх яркого типа обладают планарными плоскими выводами, промаркированными «+» и «-».
Устройства в цилиндрическом корпусе имеют внутри пару электродов, отличающихся площадью. Именно катодная часть светоизлучающих диодов отличается большей электродной площадью и наличием характерного скоса на «юбке».
Светодиоды, применяемые в поверхностном монтаже, обладают специальным скосом или «ключом», указывающим на катод или минусовую полярность.
Подключение к источнику питания
Передача питания от элементов с постоянным напряжением — один из самых наглядных вариантов определения диодной полярности, требующий использования специального блока с поступательным регулированием напряжения, или традиционной аккумуляторной батареи. После подключения, постепенно повышаются показатели напряжения, что вызывает свечение светодиода и свидетельствует о правильном определении полярности.
Подключение диодов к питанию
Чтобы проверить работоспособность светового диода, в обязательном порядке подключается резистор токоограничивающего типа с сопротивлением от 680 Ом.
Электроприборы работающие в диапазоне напряжений 100-110 вольт
Теперь рассмотрим другой вариант ситуации: купленный электроприбор рассчитан строго на напряжение 100-110 вольт. Это все крупные стационарные электроприборы, которые редко путешествуют между континентами. Кроме телевизоров со стиральными машинами сюда относятся небольшие, но мощные электроприборы: утюги, фены, плойки, электрочайники, тостеры, пылесосы.
Решить и эту проблему можно, но не так просто и дешево, как с адаптером. Вас выручит покупка специального прибора, т.н. понижающего трансформатора, который преобразовывает напряжение электросети 220 вольт, автоматически понижая его до необходимых прибору 110 вольт. После его покупки такого трансформатора никаких адаптеров покупать больше не надо, т.к. все необходимые разъемы уже есть на приборе.
Со стороны пользователя никаких настроек, кроме соединения вилок питания не требуется, просто придется каждый раз подключать имеющийся электроприбор к сети через данный трансформатор. Но момент, который необходимо обязательно учесть при покупке — это мощность вашего электроприбора.
Для мощных электроприборов нужен понижающий трансформатор большей мощности. Вам необходимо определить максимальную мощность вашего электроприбора, которая обычно указывается в Ваттах (ищите «W» или «Watt») и исходя из этой информации уже покупать понижающий трансформатор.
Габариты понижающих трансформаторов варьируют. Для электроприборов небольшой мощности – до 150-200 Ватт (принтер, ксерокс) он немного больше обычного блока питания, а для большей мощности, например 1000-3000 Ватт (фен, пылесос), его габариты могут достигать размеров двухлитрового пакета с соком.
Вот как выглядит стандартный понижающий трансформатор небольшой мощности
Обратите внимание, что на всех подобных приборах разъем под вилку американского стандарта уже присутствует. А вот понижающий трансформатор большей мощности, рассчитанный на целых два электроприбора
А вот понижающий трансформатор большей мощности, рассчитанный на целых два электроприбора
А вот понижающий трансформатор большей мощности, рассчитанный на целых два электроприбора.
Торговая марка «Штиль», Российская Федерация.
Обычно понижающие транформаторы найти в магазинах электротоваров непросто. Легче заказать через интернет, например с бесплатной доставкой, они есть в китайском Aliexpress или гипермаркете Amazon. Стоят от $20, для приборов мощностью до 200 Ватт. Чем мощнее подключаемый прибор, тем дороже трансформатор, например для приборов мощностью до 3000 Ватт он уже будет стоить от $100.
Также, как и в случае с адаптерами сильно экономить тут не стоит. Рискуете получить проблему.
И под конец ответы на несколько распространенных вопросов.
Нашел в США электроприборы рассчитанные на 220 вольт. Можно их покупать?
Да, такие товары и даже целые магазины встречаются. Конечно можете покупать. Обычно эти товары уже укомплектованы «евровилкой».
Если мощности понижающего трансформатора недостаточно?
В этом случае также стоит воздержаться от использования. Хорошо если есть встроенный предохранитель, который просто отключит электроприбор при нагревании. А если нет? Проверять не стоит.
Особенности монтажа монохромных световых полос
Монохромные LED-полосы могут иметь различные оттенки, но наиболее распространёнными считаются ленты с белым свечением, которые, в свою очередь, делятся по температурным режимам. К примеру, полосы с тёплым белым светом, более близким по оттенку к лампам накаливания. Это приятное мягкое свечение чуть желтоватого оттенка применяется для спален, гостиных и детских. Если же говорить о холодном свете, то такой наиболее применим для офисных помещений.
ФОТО: designmyhome.ruМонохромная белая лента в интерьере смотрится довольно неплохо
Для подключения монохромной светодиодной ленты требуется лишь 2 контакта: плюс и минус. Монтаж их намного проще, чем RGB, однако и эффект, создаваемый при работе такой полосы, необычным назвать не получится. Попробуем подробно рассмотреть, как подключается монохромная LED-лента.
Инструкция по подключению монохромной световой полосы
Для того, чтобы пошаговая инструкция монтажа воспринималась читателем проще, мы проиллюстрируем все выполняемые действия фотопримерами.
ФОТО: yastroyu.ruМаломощную ленту можно использовать в виде подсветки
Рассмотрим наиболее простой вариант, когда всё оборудование приобретается одновременно в комплекте. В этом случае не потребуется паяльник или дополнительные коннекторы. Все необходимые штекеры уже установлены на оборудовании.
Для начала рассмотрим, что собой представляет комплект. Это:
- светодиодная лента длиной 5 м;
- диммер с пультом дистанционного управления для монохромной ленты;
- блок питания (в нашем случае, его мощность составляет 6 Вт).
ФОТО: youtube.comКомплект для обустройства подсветки: лента, диммер, блок питания
После распаковки требуется соединить светодиодную ленту с диммером, а после этого – с блоком питания. Сделать это крайне просто, нужно всего лишь вставить штекеры в соответствующие гнёзда.
ФОТО: youtube.comСоединение всех элементов цепи – теперь можно включать блок питания в сеть
Включение и выключение светодиодной подсветки осуществляется при помощи ПДУ. Для этого на нём имеются кнопки On и Off.
ФОТО: youtube.comКнопки для включения и выключения светодиодной полосы
Дополнительные кнопки, в нашем случае оранжево-коричневого цвета, регулируют интенсивность мигания светодиодов ленты от самого медленного (сверху) до ускоренного (снизу). Такая опция может создать необходимую атмосферу во время какого-либо праздника, танцев.
ФОТО: youtube.comКнопки для регулирования интенсивности режима стробоскопа
Также на пульте ДУ можно найти кнопки для включения других режимов, вроде цикличного медленного или ускоренного затухания. Если же требуется вручную немного приглушить интенсивность освещения, то вверху имеются клавиши и для этих целей. Это, собственно, и есть сам диммер.
ФОТО: youtube.comКнопки ручного диммирования на ПДУ
Подключение двух и более монохромных лент
Особой разницы в подключении дополнительных лент нет. Однако есть пара нюансов, игнорировать которые не стоит. Во-первых, светодиодные ленты нельзя подключать последовательно, делая из них полосы, длиной более пяти метров. Такие действия приведут к перегреву и перегоранию дорожек, находящихся ближе к блоку питания вследствие повышенной нагрузки на них. Поэтому здесь подойдёт только параллельное подключение.
ФОТО: carnovato.ruСхема коммутации монохромной ленты
Во-вторых, блок питания должен иметь выходную мощность соответствующую всем подключённым к нему светодиодным лентам. В идеале, выходная мощность выпрямителя должна превышать потребляемую на 30%. В противном случае, блок питания будет перегреваться и, в итоге, выйдет из строя.
Обратный ток утечки
Но раз уж диоды Шоттки такие крутые, то почему бы их не использовать везде? Почему мы до сих пор используем простые диоды?
Если мы подключим диод в обратном направлении, то он будет блокировать прохождение электрического тока. Это верно, но не совсем. Очень маленький ток все равно будет проходить через диод
В некоторых случаях это не принимают во внимание. Этот маленький ток называется обратным током утечки
На английский манер это звучит как reverse leakage current.
Он очень мал, но имеет место быть.
Проведем простой опыт. Возьмем лабораторный блок питания, выставим на нем 19 В и подадим это напряжение на диод в обратном направлении
Замеряем ток утечки
обратный ток утечки диода
Как вы видите, его значение составляет 0,1 мкА.
Давайте теперь повторим этот же самый опыт с диодом Шоттки
обратный ток утечки диода Шоттки
Ого, уже почти 20 мкА! Ну да, в некоторых случаях это сущие копейки и ими можно пренебречь. Но есть схемы, где все-таки недопустим такой незначительный ток. Например, в схемах пикового детектора
схема пик детектора
В этом случае эти 20 мкА будут весьма значительны.
Но есть также еще один камень преткновения. С увеличением температуры обратный ток утечки возрастает в разы!
зависимость обратного тока утечки от температуры корпуса диода Шоттки
Поэтому, вы не можете использовать Шоттки везде в схемах.
Но и это еще не все. Обратное напряжение для диодов Шоттки в разы меньше, чем для простых выпрямительных диодов. Это можно также увидеть из даташита. Если для диода 1N4007 обратное напряжение составляет 1000 В
То для диода Шоттки 1N5817 это обратное напряжение уже будет составлять всего-то 20 В
Поэтому, если это напряжение превысит значение, которое описано в даташите, мы в итоге получим:
Как подключить светодиод к сети 220 вольт
Светодиод – это разновидность полупроводниковых диодов с напряжением и током питания намного меньшим, чем в бытовой электросети. При прямом подключении в сеть 220 вольт, он мгновенно выйдет из строя.
Поэтому светоизлучающий диод обязательно подключается только через токоограничивающий элемент. Наиболее дешевыми и простыми в сборке является схемы с понижающим элементом в виде резистора или конденсатора.
Первое, что нужно знать при подключении к сети 220В, — для номинального свечения через светодиод должен проходить ток в 20мА, а падение напряжения на нем не должно превышать 2,2-3В. Исходя из этого, необходимо рассчитать номинал токоограничивающего резистора по следующей формуле:
- где:
- 0,75 – коэффициент надежности LED;
- U пит – это напряжения источника питания;
- U пад – напряжение, которое падает на светоизлучающем диоде и создает световой поток;
- I – номинальный ток, проходящий через него;
- R – номинал сопротивления для регулирования проходящего тока.
После соответствующих вычислений, номинал сопротивления должен соответствовать 30 кОм.
Однако не стоит забывать, что на сопротивлении будет выделятся большое количество тепла за счет падения напряжения. По этой причине дополнительно необходимо рассчитать мощность этого резистора по формуле:
Для нашего случая U – это будет разность напряжения питающей сети и напряжения падения на светодиоде. После соответствующих вычислений, для подключения одного led мощность сопротивления должна равняться 2Вт.
Важный момент, на который нужно обратить внимание при подключении светодиода в сеть переменного тока – это ограничение обратного напряжения. С этой задачей легко справляется любой кремниевый диод, рассчитанный на ток не менее того, что течет в цепи
Подключается диод последовательно после резистора или обратной полярностью параллельно светодиоду.
Существует мнение, что можно обойтись без ограничения обратного напряжения, так как электрический пробой не вызывает повреждения светоизлучающего диода. Однако обратный ток может вызвать перегрев p-n перехода, в результате чего произойдет тепловой пробой и разрушение кристалла светодиода.
Вместо кремниевого диода можно использовать второй светоизлучающий диод с аналогичным прямым током, который подключается обратной полярностью параллельно первому светодиоду. Отрицательной стороной схем с токоограничивающим резистором является необходимость в рассеивании большой мощности.
Эта проблема становится особо актуальной, в случае подключения нагрузки с большим потребляемым током. Решается данная проблема путем замены резистора на неполярный конденсатор, который в подобных схемах называют балластным или гасящим.
Включенный в сеть переменного тока неполярный конденсатор, ведет себя как сопротивление, но не рассеивает потребляемую мощность в виде тепла.
В данных схемах, при выключении питания, конденсатор остается не разряженным, что создает угрозу поражения электрическим током. Данная проблема легко решается путем подключения к конденсатору шунтирующего резистора мощностью 0,5 ватт с сопротивлением не менее 240 кОм.
Расчет резистора для светодиода
Во всех выше представленных схемах с токоограничивающим резистором расчет сопротивления производится согласно закону Ома:
R = U/I
- где:
- U – это напряжение питания;
- I – рабочий ток светодиода.
Рассеиваемая резистором мощность равна P = U * I.
Если планируется использовать схему в корпусе с низкой конвекцией, рекомендуется увеличить максимальное значение рассеиваемой резистором мощности на 30%.
Расчет гасящего конденсатора для светодиода
Расчёт ёмкости гасящего конденсатора (в мкФ) производится по следующей формуле:
C = 3200*I/U
- где:
- I – это ток нагрузки;
- U – напряжение питания.
Данная формула является упрощенной, но ее точности достаточно для последовательного подключения 1-5 слаботочных светодиодов.
Для защиты схемы от перепадов напряжения и импульсных помех, гасящий конденсатор нужно выбирать с рабочим напряжением не менее 400 В.
Конденсатор лучше использовать керамический типа К73–17 с рабочим напряжением более 400 В или его импортный аналог. Нельзя использовать электролитические (полярные) конденсаторы.
Безопасность при подключении
Не следует устанавливать в цепь диодов полярные конденсаторы
При работе со схемой включения диодов в сеть 220 Вольт основную опасность представляет соединенный последовательно с ними ограничивающий конденсатор. Под воздействием сетевого напряжения он заряжается до опасного для человека потенциала. Чтобы избежать неприятностей в этой ситуации рекомендуется:
- предусмотреть в схеме специальную разрядную резисторную цепочку, управляемую отдельной кнопкой;
- если сделать это невозможно, перед началом настойки после отключения от сети следует разряжать конденсатор с помощью жала отвертки;
- не устанавливать в цепь питания диодов полярные конденсаторы, обратный ток которых достигает значений, способных «выжечь» схему.
Нюансы подключения к сети 220 В
При подключении led к сети 220В существуют некоторые особенности, связанные с величиной проходящего тока. Например, в распространенных выключателях освещения с подсветкой, светодиод включается по схеме, изображенной ниже:
Как видно, здесь отсутствуют защитные диоды, а сопротивление резистора выбрано таким образом, чтобы ограничить прямой ток led на уровне около 1 мА. Нагрузка в виде лампы также служит ограничителем тока. При такой схеме подключения светодиод будет светиться тускло, но достаточно для того, чтобы разглядеть выключатель в комнате в ночное время. Кроме того, обратное напряжение будет приложено в основном к резистору при разомкнутом ключе, и светоизлучающий диод оказывается защищенным от пробоя.
Если требуется подключить к 220В несколько светодиодов, можно включить их последовательно на основе схемы с гасящим конденсатором:
При этом все led должны быть рассчитаны на одинаковый ток для равномерного свечения.
Можно заменить шунтирующий диод встречно-параллельным подключением светодиодов:
В обоих случаях нужно будет пересчитать величину емкости конденсатора, т.к. возрастет напряжение на светодиодах.
Еще несколько вариантов недопустимого подключения светоизлучающих диодов в сеть 220В описаны в этом видео:
Здесь показано, почему нельзя:
- включать светодиод напрямую;
- последовательно соединять светодиоды, рассчитанные на разный ток;
- включать led без защиты от обратного напряжения.