Оглавление
Подготовка исходных данных для расчета потерь электроэнергии
15.1.
Для выполнения расчетов потерь электрической энергии используется утвержденная
принципиальная электрическая схема питающей и распределительной сети 10(6)-0,4
кВ в нормальном режиме ее работы с указанием на ней всех центров питания (ЦП),
распределительных пунктов (РП), типов реакторов, марок, сечений и длин всех
кабельных (КЛ) и воздушных (ВЛ) линий, номера сетевых и абонентских
трансформаторных подстанций (ТП). На ТП должны быть указаны номера ячеек,
данные силовых трансформаторов, коммутирующих аппаратов. На ЦП и РП указываются
номера секций и ячеек, наименование питающих и распределительных линий,
отходящих от данных секций. Кроме того, на схеме сети должны быть проставлены
токоразделы, соответствующие нормальному режиму работы электросети.
15.2.
При расчетах потерь электрической энергии используются фактические данные,
полученные из автоматизированной системы контроля и учета, а при ее отсутствии
– результаты контрольных замеров за расчетный период.
Расчет и экспертиза нормативов потерь электрической энергии
Технологические потери электроэнергии при ее передаче по электрическим сетям включают в себя технические потери в линиях и оборудовании электрических сетей, обусловленных физическими процессами, происходящими при передаче электроэнергии в соответствии с техническими характеристиками и режимами работы линий и оборудования, с учетом расхода электроэнергии на собственные нужды подстанций и потери, обусловленные допустимыми погрешностями системы учета электроэнергии. Объем (количество) технологических потерь электроэнергии в целях определения норматива технологических потерь электроэнергии при ее передаче по электрическим сетям рассчитывается в соответствии с Методикой расчета технологических потерь электроэнергии при ее передаче по электрическим сетям в базовом периоде.
Документы, регламентирующие расчет нормативов расхода электрической энергии
«Инструкция по организации в Министерстве энергетики Российской Федерации работы по расчету и обоснованию нормативов технологических потерь электроэнергии при ее передаче по электрическим сетям», утвержденная Приказом Минэнерго РФ от 30.12.2008 № 326.
Документы, регламентирующие порядок утверждения нормативов в Минэнерго РФ
«Административный регламент Министерства энергетики Российской Федерации по исполнению государственной функции по утверждению нормативов технологических потерь электроэнергии при ее передаче по электрическим сетям», утвержденный Приказом Минэнерго РФ от 01.11.2007 г. № 470.
Для определения точной стоимости работ необходимо заполнить опросный лист.
За дополнительной информацией обращайтесь по телефону: 8(495)973-32-67
Составление небаланса в высоковольтных и распределительных сетях
Потери электроэнергии технического плана можно выявить через другой метод. О нем уже говорилось выше – предполагается, что все высоковольтные или распределительные сети обвязаны приборами учета. Они помогают определить величину максимально точно. Кроме этого, подобная методика обеспечивает реальную борьбу с неплательщиками, воровством и неправильное использование энергооборудования.
Следует отметить, что подобный подход, несмотря на эффективность, неприменим в современных условиях. Для этого необходимы серьезные мероприятия с большими затратами на реализацию обвязки всех потребителей электронными учетами с передачей данных (АСКУЭ).
Зеленый тариф в России – плюсы и минусы
Использование каждой новой технологии, вызывает ряд вопросов, связанных с ее преимуществами и недостатками. Какие плюсы имеет зеленый тариф для пользователей?
- Используя альтернативный источник электроэнергии, владелец может получать дополнительный доход;
- На полученный дополнительный доход не распространяется налогообложение;
- Использование альтернативных электростанций не загрязняет окружающую среду, что часто связано со штрафами или дополнительной уплатой налогов.
Недостатки зеленого тарифа на себе ощутят, в основном, местные и федеральные государственные структуры. Минусами зеленого тарифа являются:
- Завышенная стоимость электроэнергии, которую предприятиям Энергосбыта придется выплачивать по договору;
- Из-за снижения налоговой нагрузки, местные и федеральные бюджеты будут лишены определенной суммы денежных средств.
В общем, зеленый тариф в России, создаст самые благоприятные условия для приобретения и установки домашних электростанций, владельцы которых смогут продавать излишки энергии государству, получая дополнительный доход.
Источники
- https://www.asutpp.ru/zelenyj-tarif.html
- https://en-mart.com/kak-prodat-elektroenergiyu-vashego-generatora/
- https://altenergiya.ru/novosti/zelenyj-tarif-na-elektroenergiyu-sut-preimushhestva-i-nedostatki-poryadok-podklyucheniya.html
- https://zeleniy-tarif.ru/
Где и насколько происходят потери?
Задачей энергетиков является не только обеспечение своих потребителей электроэнергией, а и максимально возможное сокращение потерь на ЛЭП,
поскольку данные потери имеют достаточно большое значение. Чем меньше величина напряжения на линии, тем больше процентов потерь.
Так, для низковольтных линий (220 В – бытовая электросеть), процент потерь составляет около 6%.
Потери происходят и на трансформаторах (около 3%). То есть, если от трансформатора мощностью 100 кВт подаётся ток напряжением 220 В для обеспечения жилого дома
(к примеру, включающим 100 квартир) электроэнергией, на ЛЭП и внутри трансформатора ежечасно будет выделяться энергия в виде тепла
(при прохождении тока проводники нагреваются), равная 9 % от потребляемой: если трансформатор работает на полную мощность
(в каждой из сотни квартир электросеть нагружена на 1 кВт), то мощность потерь составит 9 кВт.
Допустим, на производство 1 кВт*час электрической энергии производитель тратит 1 рубль.
Ежечасно он будет получать убытки в размере 9кВт*час*1час*1 руб. = 9 руб. Если производитель обеспечивает электроэнергией 10 таких жилых домов,
то ежечасный убыток составит 90 руб. Но это лишь на ЛЭП от трансформатора к потребителю.
Также стоит учитывать потери на ЛЭП от электростанции к трансформатору. Для того, чтоб максимально сократить мощность потерь,
на электростанциях напряжение тока значительно повышают (чем больше напряжение, тем меньше сила тока и, соответственно, мощность потерь).
К примеру, на ЛЭП с напряжением до 10 кВ теряется около 3% передаваемой энергии, до 50 кВ – 2.5%, до 500 кВ – около 1.5%.
Основные причины потерь электроэнергии
Разобравшись со структурой, перейдем к причинам, вызывающим нецелевой расход в каждой из перечисленных выше категорий. Начнем с составляющих технологического фактора:
- Нагрузочные потери, они возникают в ЛЭП, оборудовании и различных элементах электросетей. Такие расходы напрямую зависят от суммарной нагрузки. В данную составляющую входят:
- Потери в ЛЭП, они напрямую связаны с силой тока. Именно поэтому при передаче электроэнергии на большие расстояния используется принцип повышения в несколько раз, что способствует пропорциональному уменьшению тока, соответственно, и затрат.
- Расход в трансформаторах, имеющий магнитную и электрическую природу ( 1 ). В качестве примера ниже представлена таблица, в которой приводятся данные затрат на трансформаторах напряжения подстанций в сетях 10 кВ.
Потери в силовых трансформаторах подстанций
Нецелевой расход в других элементах не входит в данную категорию, ввиду сложностей таких расчетов и незначительного объема затрат. Для этого предусмотрена следующая составляющая.
- Категория условно-постоянных расходов. В нее входят затраты, связанные со штатной эксплуатацией электрооборудования, к таковым относятся:
- Холостая работа силовых установок.
- Затраты в оборудовании, обеспечивающем компенсацию реактивной нагрузки.
- Другие виды затрат в различных устройствах, характеристики которых не зависят от нагрузки. В качестве примера можно привестисиловую изоляцию, приборы учета в сетях 0,38 кВ, змерительные трансформаторы тока, ограничители перенапряжения и т.д.
- Климатическая составляющая. Нецелевой расход электроэнергии может быть связан с климатическими условиями характерными для той местности, где проходят ЛЭП. В сетях 6 кВ и выше от этого зависит величина тока утечки в изоляторах. В магистралях от 110 кВ большая доля затрат приходится на коронные разряды, возникновению которых способствует влажность воздуха. Помимо этого в холодное время года для нашего климата характерно такое явление, как обледенение на проводах высоковольтных линий, а также обычных ЛЭП. Гололед на ЛЭП
Учитывая последний фактор, следует учитывать затраты электроэнергии на расплавление льда.
Виды и структура
Примерная структура потерь
Потери в электросетях с точки зрения энергосбережения – это разница между отпущенным поставщиком объемом электричества и той энергией, которую по факту получает потребитель. С целью нормирования и подсчета их реальной величины была принята следующая классификация:
- потери технологического характера;
- эксплуатационные (коммерческие) издержки;
- фактические непроизводительные расходы.
Второй фактор – коммерческий – обычно увязывается с такими неустранимыми причинами, как погрешность приборов, измеряющих контролируемые параметры. В нем также учитывается ряд нюансов, касающихся ошибочных снятий показаний по потреблению и хищений энергии.
Коронный разряд на линии ЛЭП
Большую их часть составляют расходы на ионизацию воздуха из-за коронарного разряда (17%). Фактическими называют потери, которые были определены в самом начале – разница между отпущенным продуктом и его потребленным объемом. При их упрощенном расчете иногда две описанные составляющие просто складываются. Однако на практике техника вычисления этого показателя оказывается несколько иной. Для его определения применяется проверенная временем методика расчета потерь в проводах с учетом всех остальных компонентов.
Фактическая их величина согласно специальной формуле равна притоку энергии в сеть за минусом следующих составляющих:
- полученный частным потребителем объем;
- перетоки в другие ветви энергосистемы;
- собственные технологические нужды.
Затем полученный результат делится на поступающий в сеть объем электроэнергии минус потребление в нагрузках, где потери отсутствуют, минус перетоки и собственные нужды. На завершающем этапе расчетной операции итоговая цифра умножается на 100%. Если требуется получить результат в абсолютных значениях, при использовании этого метода ограничиваются расчетами одного только числителя.
Определение нагрузки, обходящейся без непроизводительных расходов (перетоки)
В рассмотренной ранее формуле введено понятие нагрузки без потерь, определяемой посредством приборов коммерческого учета, устанавливаемых на подстанциях. Любое предприятие или государственная организация самостоятельно оплачивают потери в электрической сети, фиксируемые отдельным счетчиком в точке подключения. «Перетоки» также относят к категории расходов энергии без потерь (так удобнее вести расчет). Под ними понимается та ее часть, которая из одной энергосистемы перенаправляется в другую. Для учета этих объемов также применяются отдельные измерительные приборы.
Основные причины технических потерь
На практике линии протягиваются на большие расстояния для подачи нагрузок, разбросанных по большим площадям. Таким образом, распределительные линии радиально проложены и обычно простираются на большие расстояния. Это приводит к высокому сопротивлению линии и, следовательно, высоким значениям I2R в линии.
- Бессистемное разрастание субтрансляционной и распределительной систем в новые районы
- Значительная электрификация сельских районов с помощью длинных линий
- Недостаточный размер сечения проводников распределительных линий.
Размер сечения проводников следует выбирать исходя из мощности стандартного проводника для поддержания определенного напряжения, но сельские нагрузки обычно рассеяны и обычно питаются радиальными потребилелями. Размер проводника этих фидеров должен быть достаточным.
- Установка силовых трансформаторов вдали от центров нагрузки
Если силовые трансформаторы расположить не в центре распределительной системы, то самые дальние потребители получают экстремально низкое напряжение, даже если на трансформаторах поддерживается хороший уровень напряжения. Поэтому, чтобы уменьшить падение напряжения в линии до самых дальних потребителей, силовой трансформатор должен быть расположен в центре нагрузки, чтобы держать падение напряжения в разрешенных пределах. - Низкий коэффициент мощности энергосистемы.
Стандартный коэффициент мощности обычно колеблется от 0,6 до 0,7. Низкий коэффициент мощности способствует высоким распределительным падениям тока. Если коэффициент мощности низкий, то потери, пропорциональные квадрату тока, будут больше. Таким образом, падения тока в линии могут быть уменьшены путем улучшения коэффициента мощности.
Плохое качество силовой электрофурнитуры
Плохое качество силовой электрофурнитуры вносит значительный вклад в увеличение потерь при распределении. Кабельные муфты, наконечники, соединители, кабели и материалы кабельного монтажа, припой, защита кабеля в земле являются источниками потерь тока. Поэтому количество стыков должно быть сведено к минимуму. Для обеспечения прочных соединений необходимо использовать надлежащие методы соединения. Соединения с предохранителем, изолятором, выключателем и т. д. должны периодически проверяться и поддерживаться в надлежащем состоянии, чтобы избежать искрения и нагрева контактов. Замена поврежденных проводов и соединений также должна производиться своевременно, чтобы избежать любой причины утечки и потери мощности.
Фазный ток фидера и балансировка нагрузки
Одним из самых простых способов экономии в распределительной системе является балансировка тока по трехфазным цепям. Балансировка фаз фидера также имеет тенденцию уравновешивать падение напряжения между фазами, давая трехфазным клиентам меньший дисбаланс напряжения. Даже если напряжение по всем фазам выходит одинаковое, то это не значит что у потребителей будет также. Фидеры обычно считаются без перекоса фаз когда величины фазного тока разняться не более чем на 10%. Балансировка и перераспределение нагрузки снизит потери тока. Обычно для устранения устанавливаются дополнительные переключатели нагрузки.
Влияние коэффициента нагрузки на потери
Затрачиваемая потребителем энергия зависит от времени суток и года. Жилые дома обычно имеют самый высокий спрос на электроэнергию в вечерние часы. Предприятия промышленности потребляют больше энергии в начале и середине дня. Поскольку текущая нагрузка является основным фактором потерь распределительной мощности, регулирование потребления энергии на более высоком уровне в течение дня помогает снизить пиковые и общие падения энергии. Процент потерь напряжения также снижается за счет повышения коэффициента нагрузки.
Энергоснабжающие компании также используют стоимостные параметры, чтобы повлиять на потребителей. Так в нерабочее время стоимость электроэнергии ниже.
Расходы на поддержку работы подстанций
К данной категории отнесены затраты электрической энергии на функционирование вспомогательных устройств. Такое оборудование необходимо для нормальной эксплуатации основных узлов, отвечающих за преобразование электроэнергии и ее распределение. Фиксация затрат осуществляется приборами учета. Приведем список основных потребителей, относящихся к данной категории:
- системы вентиляции и охлаждения трансформаторного оборудования;
- отопление и вентиляция технологического помещения, а также внутренние осветительные приборы;
- освещение прилегающих к подстанциям территорий;
- зарядное оборудование АКБ;
- оперативные цепи и системы контроля и управления;
- системы обогрева наружного оборудования, например, модули управления воздушными выключателями;
- различные виды компрессорного оборудования;
- вспомогательные механизмы;
- оборудование для ремонтных работ, аппаратура связи, а также другие приспособления.
Используемое программное обеспечение для расчета
На текущий момент существует огромное количество программного софта, который выполняет расчет норматива технических потерь. Выбор того или иного продукта зависит от стоимости обслуживания, региональности и других важных моментов. В Республике Беларусь основной программой считается DWRES.
Софт разрабатывался группой ученых и программистов Белорусского Национального Технического Университета под руководством профессора Фурсанова Н.И. Инструмент для расчета норматива потерь специфичен, обладает рядом системных достоинств и недостатков.
Для рынка России особой популярностью пользуется ПО «РПТ 3», который разрабатывался специалистами ОАО «НТЦ Электроэнергетики». Софт весьма неплохой, выполняет поставленные задачи, но также обладает рядом отрицательных сторон. Тем не менее расчет нормативных величин осуществляется в полной мере.
Способы уменьшения потерь в электрических сетях
Снизить затраты можно путем оптимизации технической и коммерческой составляющей. В первом случае следует принять следующие меры:
- Оптимизация схемы и режима работы электросети.
- Исследование статической устойчивости и выделение мощных узлов нагрузки.
- Снижение суммарной мощности за счет реактивной составляющей. В результате доля активной мощности увеличится, что позитивно отразится на борьбе с потерями.
- Оптимизация нагрузки трансформаторов.
- Модернизация оборудования.
- Различные методы выравнивания нагрузки. Например, это можно сделать, введя многотарифную систему оплаты, в которой в часы максимальной нагрузки повышенная стоимость кВт/ч. Это позволит существенно потребление электроэнергии в определенные периоды суток, в результате фактическое напряжение не будет «проседать» ниже допустимых норм.
Уменьшить коммерческие затраты можно следующим образом:
- регулярный поиск несанкционированных подключений;
- создание или расширение подразделений, осуществляющих контроль;
- проверка показаний;
- автоматизация сбора и обработки данных.
Электрические потери
Электрические потери pэл в каждой обмотке вычисляют по формуле pэл = I² × r. Сопротивление обмотки зависит от температуры. Поэтому ГОСТ 25941-83 предусматривает определение потерь в обмотках при приведении их к рабочей температуре (75°C для классов обмоток A, E и B и 115°C для классов F и H). В нормальных машинах постоянного тока имеются две электрические цепи: цепь якоря и цепь возбуждения. Поэтому обычно рассматривают потери в цепи якоря pэл.а и в цепи возбуждения pэл.в.
Потери в обмотках можно выразить также через плотность тока в обмотке j и массу обмотки (без изоляции) G. Действительно,
где l – общая длина проводников обмотки; s – сечение проводника; γ – плотность проводника; ρ – удельное сопротивление.
Но
(I / s)² = j² и lsγ = G.
Поэтому
Например, для меди γ = 8,9 г/см³ и при 75°C ρ = 1/4600 Ом×мм ²/см. Если выразить, далее, j в А/мм², то получим
(7) |
Таким образом, формула (7) определяет потери в ваттах в медной обмотке массой G кг при 75°C и при плотности тока j А/мм².
К электрическим потерям относят также потери в регулировочных реостатах и потери в переходных сопротивлениях щеточных контактов. Потери в переходных сопротивлениях щеточных контактов для щеток одной полярности вычисляются по формуле
pэл.щ = ΔUщ × I , | (8) |
где ΔUщ – падение напряжения на один щеточный контакт. Так как ΔUщ зависит сложным образом от разных величин и факторов, то для упрощения расчетов, согласно ГОСТ 11828-86, «Машины электрические вращающиеся. Общие методы испытаний», принимается для угольных и графитовых щеток ΔUщ = 1 В и для металлоугольных щеток ΔUщ = 0,3 В.
Работа с картами 1С 4 в 1: Яндекс, Google , 2ГИС, OpenStreetMap(OpenLayers) Промо
С каждым годом становится все очевидно, что использование онлайн-сервисов намного упрощает жизнь. К сожалению по картографическим сервисам условия пока жестковаты. Но, ориентируясь на будущее, я решил показать возможности API выше указанных сервисов: Инициализация карты Поиск адреса на карте с текстовым представлением Геокодинг Обратная поиск адреса по ее координатами Взаимодействие с картами — прием координат установленного на карте метки Построение маршрутов по указанным точками Кластеризация меток на карте при увеличении масштаба Теперь также поддержка тонкого и веб-клиента
1 стартмани
Как рассчитывают потери электроэнергии по длине линии
На основе описанных выше параметров, можно воспользоваться формулой для вычисления потерь электроэнергии по время ее передачи.
В данной формуле:
ΔW – общее количество потерь электрической энергии при передаче,
W – объем электрической энергии, потраченной на обеспечение работы линии в течение определенного промежутка времени,
КL – коэффициент, предназначенный для учета распределительной нагрузки на линию потребления, в рассматриваемом примере вся сеть разбита на три отдельных линии, к каждой из которых подключено по 20 объектов потребления,
Кф – коэффициент из графика нагрузки на линию,
L – длина сети электроснабжения,
tgφ – реактивная мощность сети,
F – диаметр сечения провода на участке сети,
Д – отрезок времени, в течение которого осуществляется потребление энергии и, как следствие, потери,
Кф² — коэффициент заполнения графика.
Кф² можно рассчитать по простой формуле:
Кз в данной формуле – это коэффициент заполнения графика потребления. Если отсутствуют точные данные по такому графику, за коэффициент принимают величину 0,3. В этом случае по формуле высчитывается Кф², которое будет равняться 1,78.
Если за основу расчетов принять годовую мощность сети в 63 тысячи кВт, тогда для каждой отдельной линии на один фидер будет приходиться электроэнергии на 21 тысячу кВт. Для формулы лучше применять величину в Вт, а не в кВт, то есть, 21*106 Вт/ч.
Когда все необходимые параметры для расчета установлены, их следует подставить в основную формулу, которая в нашем случае будет иметь следующий вид:
Проводим расчеты и получаем величину потерь электроэнергии для одной из трех линий, равную 573,67 кВт/ч. Общие потери в год будут в три раза больше, то есть — 1721 кВт/ч. Именно так должен проводиться расчет потерь электроэнергии на разных объектах.
Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости проектирования сетей электроснабжения:
Устройство и принцип действия
В статическом оборудовании, которое предназначено для преобразования частоты и напряжения тока, а также количества фаз, отсутствуют движущиеся элементы конструкции, что исключает возникновение потерь механического характера. Но в процессе передачи нагрузки с первичного контура на вторичный не вся мощность доходит до приемника энергии, выступающего конечным потребителем.
Электромагнитное статическое оборудование без вращающихся деталей преобразует энергию и работает от электросети. Силовой агрегат представляет собой прибор, основными элементами которого служат стальной магнитопровод стержневого или броневого исполнения и катушки – несвязанные электрически изолированные провода.
Трансформаторное оборудование бывает однофазного и многофазного типа, соответственно, состоящего из двух или более контуров. По типу исполнения различают приборы с броневым, стержневым или бронестержневым магнитопроводом. Принцип действия оборудования на примере простого однофазного прибора:
- К источнику переменного тока подключена первая катушка, а вторичный контур соединен с приемником электроэнергии (конечным потребителем).
- Переменный ток проходит по виткам первичной обмотки, и его величина соответствует значению нагрузки I1.
- Магнитный поток Ф пронизывает оба контура и индуцирует в проводниках электродвижущую силу.
- При подключении второго контура к источнику электроэнергии в цепи под действием ЭДС возникает ток нагрузки I2.
- Трансформаторный узел работает на холостом ходе, если на вторичную обмотку прибора не подается нагрузка.
Особенности
Величина показателя электродвижущей силы тесно связана с числом витков провода на катушках. Соотношение ЭДС в обмотках, называемое коэффициентом трансформации, соответствует числу витков медных катушек. Изменяя количество витков в контурах, можно регулировать напряжение в приемнике электроэнергии.
Обмотки связаны между собой магнитными линиями, а на степень их взаимосвязи влияет близость/дальность расположения катушек. Из-за изменения силы тока в первой обмотке, обе цепи пронизывает магнитный поток, постоянно меняющий свою величину и направленность. Соединение концов вторичной обмотки с приемником передает ему ток, а средством передачи энергии выступает переменный магнитный поток – катушки не связаны друг с другом гальваническим способом.
Стоит также учесть, что нельзя размыкать вторичную обмотку трансформатора.
Основные причины потерь электроэнергии
Разобравшись со структурой, перейдем к причинам, вызывающим нецелевой расход в каждой из перечисленных выше категорий. Начнем с составляющих технологического фактора:
- Нагрузочные потери, они возникают в ЛЭП, оборудовании и различных элементах электросетей. Такие расходы напрямую зависят от суммарной нагрузки. В данную составляющую входят:
- Потери в ЛЭП, они напрямую связаны с силой тока. Именно поэтому при передаче электроэнергии на большие расстояния используется принцип повышения в несколько раз, что способствует пропорциональному уменьшению тока, соответственно, и затрат.
- Расход в трансформаторах, имеющий магнитную и электрическую природу ( ). В качестве примера ниже представлена таблица, в которой приводятся данные затрат на трансформаторах напряжения подстанций в сетях 10 кВ.
Потери в силовых трансформаторах подстанций Нецелевой расход в других элементах не входит в данную категорию, ввиду сложностей таких расчетов и незначительного объема затрат. Для этого предусмотрена следующая составляющая.
- Категория условно-постоянных расходов. В нее входят затраты, связанные со штатной эксплуатацией электрооборудования, к таковым относятся:
- Холостая работа силовых установок.
- Затраты в оборудовании, обеспечивающем компенсацию реактивной нагрузки.
- Другие виды затрат в различных устройствах, характеристики которых не зависят от нагрузки. В качестве примера можно привестисиловую изоляцию, приборы учета в сетях 0,38 кВ, змерительные трансформаторы тока, ограничители перенапряжения и т.д.
- Климатическая составляющая. Нецелевой расход электроэнергии может быть связан с климатическими условиями характерными для той местности, где проходят ЛЭП. В сетях 6 кВ и выше от этого зависит величина тока утечки в изоляторах. В магистралях от 110 кВ большая доля затрат приходится на коронные разряды, возникновению которых способствует влажность воздуха. Помимо этого в холодное время года для нашего климата характерно такое явление, как обледенение на проводах высоковольтных линий, а также обычных ЛЭП.
Гололед на ЛЭП
Учитывая последний фактор, следует учитывать затраты электроэнергии на расплавление льда.
7.3 Потери и кпд асинхронного двигателя
Преобразование электрической энергии в механическую в двигателе связано с потерями энергии, поэтому полезная мощность на выходе двигателя Р2 всегда меньше потребляемой мощности P1 на величину потерь
Потери разделяются на основные и добавочные. Основные потери включают в себя магнитные, электрические и механические.
Магнитные потери Pм в асинхронном двигателе вызваны потерями на гистерезис и потерями на вихревые токи, происходящими в сердечнике ротора и статора при его перемагничивании. Величина магнитных потерь пропорциональна частоте перемагничивания
β
Частота перемагничивания сердечника статора равна f=50 Гц, соответственно, магнитные потери в сердечнике статора значительны, а частота перемагничивания сердечника ротора при номинальном скольжении составляет f=50∙s = (2…4)Гц и магнитные потери в сердечнике ротора малы, которые на практике не учитывают.
Электрические потери вызваны нагревом обмоток статора и ротора проходящими по ним токами:
где r1 и r2 – сопротивления обмоток фаз статора и ротора; m – число фаз.
В асинхронных двигателях с фазным ротором дополнительно имеются электрические потери в щеточном контакте.
Механические потери Рмех — это потери на трение в подшипниках и на вентиляцию. Величина этих потерь пропорциональна квадрату частоты вращения ротора
В двигателях с фазным ротором механические потери происходят еще и за счет трения между щетками и контактными кольцами ротора.
Добавочные потери включают в себя все виды трудноучитываемых потерь, вызванных пульсацией магнитной индукции в зубцах и другими причинами. В соответствии с ГОСТом добавочные потери асинхронных двигателей принимают равными 0,5% от подводимой к двигателю мощности Р1.
Таким образом, часть подводимой к двигателю мощности затрачивается в статоре на магнитные РМ и электрические потери РЭ1. Оставшаяся электромагнитная мощность РЭМ передается на ротор, где расходуется на электрические потери РЭ2 и преобразуется в полную механическую мощность. Часть этой мощности идет на покрытие механических и добавочных потерь, а оставшаяся мощность Р2 – полезная мощность двигателя.
Электрические потери в обмотках являются переменными потерями, так как их величина зависит от нагрузки двигателя, то есть от значений токов в обмотках статора и ротора. Переменными являются и добавочные потери. Магнитные и механические потери практически не зависят от нагрузки.
Коэффициент полезного действия асинхронного двигателя определяется
С изменениями нагрузки КПД меняет свою величину: в режиме холостого хода КПД равен нулю, а с ростом нагрузки КПД увеличивается, достигая максимума при нагрузке равной (0,7÷0,8)Рном.
КПД трехфазных асинхронных двигателей общего назначения при номинальной нагрузке составляет: для двигателей мощностью от 1 до 10 кВт η= 75÷88 %, а для двигателей мощностью более 10 кВт η = 90÷94 %.
Коэффициент полезного действия один из основных параметров асинхронного двигателя, который определяет его энергетические свойства — экономичность в процессе эксплуатации. Кроме того, КПД двигателя, а точнее величина потерь в нем, регламентирует температуру нагрева его основных частей и в первую очередь обмотки статора. По этой причине двигатели с низким КПД (при одинаковых условиях охлаждения) работают при более высокой температуре нагрева обмотки статора, что ведет к снижению их надежности и долговечности.