Как сделать расчёт системы водяного отопления

Оглавление

Расчет количества секций отопительных радиаторов – для чего это необходимо знать

С первого взляда высчитать, сколько секций отопительного прибора установить в том или другом помещении – просто. Чем больше комната – тем из большего количества секций должен состоять отопительный прибор. Но в действительности то, насколько тепло будет в том или другом помещении зависит от более чем десятка факторов. Учтя их, высчитать необходимое кол-во тепла от отопительных приборов, можно в несколько раз точнее.

Общие сведения

Отдача тепла одной части радиатора из чугуна – 140 ватт, более качественных железных – от 170 и выше.

Можно делать расчет количества секций отопительных радиаторов,выходя из площади помещения либо же его объема.

По нормативам считается, что на обогрев одного метра квадратного помещения необходимо 100 ватт энергии тепла. Если же исходить из объема, то тогда кол-во тепла на 1 метр кубический как правило составит не меньше 41 ватта.

Но ни один из этих вариантов не будет точным если не иметь в виду свойств того либо прочего помещения, количества и оконный размер, материал стен, и многое иное. Благодаря этому рассчитывая части отопительного прибора по типовой формуле, станем прибавлять коэффициенты, сделанные тем или другим требованием.

Площадь помещения – расчет количества секций отопительных радиаторов

Подобный расчет в большинстве случаев применяется к помещениям, размещенным в стандартных панельных жилых домах с потолочной высотой до 2,6 метра.

Площадь комнаты множится на 100 (кол-во тепла для 1м2) и разделяется на указанную изготовителем отдачу тепла одной части отопительного прибора. К примеру: площадь комнаты 22 м2, отдача тепла одной части отопительного прибора – 170 ватт.

Для данной комнаты необходимо 13 секций отопительного прибора.

Если же одна секция отопительного прибора станет иметь 190 ватт отдачи тепла, то получаем 22Х100/180=11,57 , другими словами можно обойтись 12 секциями.

К расчетам необходимо добавить 20% если комната имеет балкон или находится в срезе дома. Батарея, поставленная в нише, еще на 15% снизит отдачу тепла. Однако в кухне будет на 10-15% теплее.

Производим расчеты по объему помещения

Для дома из панелей с обычной потолочной высотой, как уже выше упоминалось, тепловой расчет изготавливается из необходимости 41 ватт на 1м3. Но если например дом новый, кирпичный, в нем установлены пакеты стекол, а фасадные стены утеплены, то необходимо уже 34 ватт на 1м3.

Формула расчета количества секций отопительного прибора выглядит так: объем (площадь, помноженная на потолочную высоту) умножается на 41 или 34 (в зависимости от типа дома) и разделяется на отдачу тепла одной части отопительного прибора, установленного в паспорте изготовителя.

Площадь комнаты 18 м2, потолочная высота 2, 6 м. Дом – стереотипная панельная постройка. Отдача тепла одной части отопительного прибора – 170 ватт.

18Х2,6Х41/170=11,2. Итак, нам необходимо 11 секций отопительного прибора. Это при условиях, что комната не угловая и в ней нет балкона, в другом случае лучше установить 12 секций.

Посчитаем максимально точно

А вот формула, по которой максимально точно можно создать расчет количества секций отопительного прибора:

Площадь помещения помноженная на 100 ватт и на коэффициенты q1, q2, q3, q4, q5, q6, q7 и поделенная на отдачу тепла одной части отопительного прибора.

Подробно об данных коэффициентах:

q1 – вид остекления: при тройном стеклопакете показатель будет 0,85, при двойном стеклопакете — 1 и при простом остеклении – 1,27.

q2 – тепловая изоляция стен:

  • современная тепловая изоляция – 0,85;
  • укладка в два кирпича с применением утеплителя – 1;
  • неутепленные стены — 1,27.

q3 – соотношение площадей окон и пола:

q4 — самая маленькая внешняя температура:

  • -10 градусов – 0,7;
  • -20 градусов – 1,1;
  • -35 градусов – 1,5.

q5 – кол-во фасадных стен:

q6 – вид помещения, которое находится выше расчетного:

  • обогреваемое — 0,8;
  • чердачное обогреваемое — 0,9;
  • чердачное необогреваемое – 1.

q7 – потолочная высота:

Если будут взяты в учет все перечисленные выше коэффициенты, сосчитать численность секций отопительного прибора в помещении можно будет максимально точно.

PRO новостройку (Москва)

Бывают ситуации, когда застройщик уверяет, что согласно жилищному законодательству РФ вспомогательные помещения не имеют отношения к общей площади, но при этом требует за них оплату в полном объеме, или же вы попали в ситуацию, когда цена недвижимости выше квадратуры, указанной в документах БТИ.

  • П.5 ст.14 ЖК РФ – где говорится, что сумма всех частей квадратуры помещения, в том числе и вспомогательная площадь, кроме балконов, лоджий и террас, имеет отношение к общей площади жилого пространства;
  • Обмер жилой территории выполняется снаружи в соответствии со СНиПами от 31.01.2033 года.

Точный расчёт теплопотерь

С помощью специальной величины, которая характеризует тепловой поток и измеряется в кКал/час, выясняют тепловые потери дома.

Эта величина показывает, сколько тепла уходит через стены здания при определённом температурном режиме внутри дома.

Данный показатель рассматривают в прямой зависимости от архитектурных особенностей здания, строительных материалов, из которых оно построено, толщины и степени теплоизоляции стен, потолка и пола. Оказывает влияние площадь остекления, качество теплоизоляторов и соблюдение технологии при их монтаже.

То есть теплопотери складываются из многих элементов.

Формула следующая: G = Sх1/Pох(Тв- Тн)к, где:

  • G — величина, которую выражают в кКал/ч;
  • Po — показатель сопротивления при теплопередаче;
  • Тв иТн — разница температурного режима внутри и снаружи;
  • к — коэффициент, который показывает, насколько теряется тепло, он у каждого заграждения свой.

Так как температура на улице и в помещении меняется в течение отопительного сезона, величины берут средние. Учитывается и тот факт, что у каждого региона с разными климатическими условиями показатель свой.

В данной формуле используются конкретные величины, все они известны. По ней можно узнать тепловые потери любого здания.

Понижающий коэффициент и значение сопротивления Pо относятся к категории нормативно-справочной информации.

Так, например, могут понадобиться следующие коэффициенты:

  • 1 — если под чистовыми полами грунт или деревянные лаги;
  • 0,9 — для чердачных перекрытий, где кровельным материалом являются сталь, черепица на обрешётке, асбоцемент (либо крыша без чердака с вентиляцией);
  • 0,8 — материалы кровли те же, но настил сплошной;
  • 0,75 — чердачные перекрытия, где кровля из любого рулонного материала;
  • 0,7 — для внутренних стен, которые выходят в соседнее неотапливаемое помещение без наружных стен;
  • 0,4 — для внутренних стен, которые соединяют с соседним неотапливаемым помещением, у которого есть наружные стены, и для полов над погребом, углублённом в грунт;
  • 0,75 — полы над погребом, устроенном выше грунта;
  • 0,6 — поверхности над подвалами, расположенными либо ниже грунта, либо не выше одного метра над ним.
  • Аналогично можно подобрать коэффициенты для других ситуаций.

Могут понадобиться следующие значения сопротивления:

  • 0,38 — при сплошной кирпичной кладке с толщиной стен в 13,5 см, 0,57 — с толщиной кладки 26,5 см, 0,76 — 39,5 см, 0,94 — 52,5 см, 1,13 — 65,5 см.
  • 0,9 — при сплошной кладке с воздушной прослойкой при толщине 43,5 см, 1,09 — 56,5 см, 1,28 — 65,5 см;
  • 0,89 — при сплошной кладке из декоративного кирпича с толщиной в 39,5 см, 1,2 — 52,5 см, 1,4 — 65,5 см.
  • 1,03 — для сплошной кладки, где термоизоляционный слой с толщиной в 39,5см, 1,49 — 52,5 см;
  • 1,33 — для деревянных стен из дерева (не бруса) с толщиной в 200 мм, 1,45 — 220 мм, 1,56 — 240 мм;
  • 1,18 — для стен из бруса с толщиной 150 мм, 1,28 — 180 мм, 1,32 — 200 мм;
  • 0,69 — для чердачных перекрытий из железобетонных плит с утеплителем с толщиной в 100 мм, 0,89 — 150 мм.

Эти показатели берут для формулы расхода воды на отопление.

Упрощенный расчет компенсации теплопотерь

Любые вычисления базируются на определенных принципах. В основу расчетов требуемой тепловой мощности батарей закладывается понимание того, что хорошо работающие нагревательные приборы должны полностью компенсировать потери тепла, возникающие при их работе из-за особенностей отапливаемых помещений.

Для жилых комнат, находящихся в хорошо утепленном доме, расположенном, в свою очередь, в умеренном климатическом поясе, в некоторых случаях подойдет упрощенный расчет компенсации тепловых утечек.

Для таких помещений вычисления основываются на нормативной мощности 41 Вт, требующейся для обогрева 1 куб.м. жилого пространства.

Чтобы излучаемая отопительными приборами тепловая энергия была направлена именно на обогрев помещений, нужно утеплять стены, чердаки, окна и полы

Формула для определения тепловой мощности радиаторов, необходимой для поддержания в помещении оптимальных условий проживания такова:

Q = 41 х V,

где V – объем отапливаемой комнаты в кубических метрах.

Полученный четырехзначный результат можно выразить в киловаттах, сократив его из расчета 1 кВт = 1000 Вт.

Оплата за отопление при отсутствующем централизованном отоплении

Установка собственного отопительного котла в квартире не противоречит законодательству, если соблюдены все условия перепланировки помещения. Это очень трудозатратная процедура, ведь отсоединение от центральной тепловой сети расценивается, как реконструкция общего имущества. Собственники решаются на такой шаг, чтобы сэкономить на счетах за отопление. Однако до последнего времени закон обязывал таких индивидуалистов оплачивать коммуналку в полном объеме, а не только за общие помещения.

В 2019 году Конституционный суд обязал Правительство внести корректировки в Правила оказания коммунальных услуг и разработать адекватную схему расчета платы за автономное отопление. Пока изменения не приняты, собственникам придется платить за отопление в двойном размере.

Расчет затрат на отопление

Хорошая отопительная система требует достаточно больших финансовых вложений. Основные расходы связаны с:

  1. Оборудование отопительной системы. В него входят котел, насос, радиаторы и материал для разводки.
  2. Установка обогревательной системы.
  3. Затраты на топливо. Количество потраченных денег зависит от выбранного вами топлива.
  4. Поддержка оборудования в рабочем состояние.

При расчете затрат нужно учитывать удельную теплоту сгорания. Рассчитайте путем деления теплопотери за сезон на теплотворность сырьевого продукта и получите количество использованного топлива. Умножьте на стоимость за единицу измерения.

Еще один метод подсчета — это расход кВт в час. На дом, площадью 120 м2 потребляется 12 кВт теплоэнергии. В месяц выходит 8640 кВт. Способ подходит для пользователей газа и электричества

Удельная тепловая мощность секций батарей

Еще до выполнения общего расчета требуемой теплоотдачи отопительных приборов, необходимо решить, разборные батареи из какого материала будут устанавливаться в помещениях.

Выбор должен основываться на характеристиках системы отопления (внутреннее давление, температура теплоносителя). При этом не стоит забывать о сильно разнящейся стоимости покупаемых изделий.

О том, как правильно рассчитать нужное количество различных батарей для отопления, и пойдет речь дальше.

При теплоносителе в 70 °С стандартные 500-миллиметровые секции радиаторов из разнородных материалов обладают неодинаковой удельной тепловой мощностью «q».

  1. Чугун – q = 160 Ватт (удельная мощность одной чугунной секции). Радиаторы из этого металла подойдут для любой системы отопления.
  2. Сталь – q = 85 Ватт. Стальные трубчатые радиаторы могут работать в самых жестких условиях эксплуатации. Их секции красивы в своем металлическом блеске, но имеют наименьшую теплоотдачу.
  3. Алюминий – q = 200 Ватт. Легкие, эстетичные алюминиевые радиаторы надо устанавливать лишь в автономные отопительные системы, в которых давление меньше 7 атмосфер. Но по отдаче тепла их секциям нет равных.
  4. Биметалл – q = 180 Ватт. Внутренности биметаллических радиаторов сделаны из стали, а теплоотводящая поверхность – из алюминия. Эти батареи выдержат всякие режимы давлений и температур. Удельная тепловая мощность секций из биметалла тоже на высоте.

Приведенные значения q довольно условны и применяются для предварительного расчета. Более точные цифры содержатся в паспортах приобретаемых отопительных приборов.

Что это такое

Термин, в сущности, интуитивно-понятный. Под тепловой нагрузкой подразумевается то количество тепловой энергии, которое необходимо для поддержания в здании, квартире или отдельном помещении комфортной температуры.

Максимальная часовая нагрузка на отопление, таким образом – это, то количество тепла, которое может потребоваться для поддержания нормированных параметров в течение часа в наиболее неблагоприятных условиях.

Какие условия считать неблагоприятными? Вопрос неразрывно связан с тем, от чего, собственно, зависит тепловая нагрузка.

Факторы

Итак, что влияет на потребность здания в тепле?

  • Материал и толщина стен. Понятно, что стена в 1 кирпич (25 сантиметров) и стена из газобетона под 15-сантиметровой пенопластовой шубой пропустят ОЧЕНЬ разное количество тепловой энергии.
  • Материал и структура кровли. Плоская крыша из железобетонных плит и утепленный чердак тоже будут весьма заметно различаться по теплопотерям.
  • Вентиляция — еще один важный фактор. Ее производительность, наличие или отсутствие системы рекуперации тепла влияют на то, сколько тепла теряется с отработанным воздухом.
  • Площадь остекления. Через окна и стеклянные фасады теряется заметно больше тепла, чем через сплошные стены.

Стены дома на фото зачернены именно для того, чтобы поглощать как можно больше солнечного тепла.

  • Дельта температур между помещением и улицей определяет тепловой поток через ограждающие конструкции при постоянном сопротивлении теплопередаче. При +5 и -30 на улице дом будет терять разное количество тепла. Уменьшит, разумеется, потребность в тепловой энергии и снижение температуры внутри здания.
  • Наконец, в проект часто приходится закладывать перспективы дальнейшего строительства. Скажем, если текущая тепловая нагрузка равна 15 киловаттам, но в ближайшем будущем планируется пристроить к дому утепленную веранду — логично приобрести бытовой отопительный котел с запасом по тепловой мощности.

Распределение

В случае водяного отопления пиковая тепловая мощность источника тепла должна быть равна сумме тепловой мощности всех отопительных приборов в доме. Разумеется, разводка тоже не должна становиться узким местом.

Распределение отопительных приборов по помещениям определяется несколькими факторами:

  1. Площадью комнаты и высотой ее потолка;
  2. Расположением внутри здания. Угловые и торцевые помещения теряют больше тепла, чем те, которые расположены в середине дома.
  3. Удаленностью от источника тепла. В индивидуальном строительстве этот параметр означает удаленность от котла, в системе центрального отопления многоквартирного дома — тем, подключена батарея к стояку подачи или обратки и тем, на каком этаже вы живете.

Как распределятся температуры в случае верхнего розлива — догадаться тоже нетрудно.

  1. Желаемой температурой в помещении. Помимо фильтрации тепла через внешние стены, внутри здания при неравномерном распределении температур тоже будет заметна миграция тепловой энергии через перегородки.

Рекомендованные СНиП значения таковы:

  1. Для жилых комнат в середине здания — 20 градусов;
  2. Для жилых комнат в углу или торце дома — 22 градуса. Более высокая температура, среди прочего, препятствует промерзанию стен.
  3. Для кухни — 18 градусов. В ней, как правило, есть большое количество собственных источников тепла — от холодильника до электроплиты.
  4. Для ванной комнаты и совмещенного санузла нормой являются 25С.

В случае воздушного отопления тепловой поток, поступающий в отдельную комнату, определяется пропускной способностью воздушного рукава. Как правило, простейший метод регулировки — ручная подстройка положений регулируемых вентиляционных решеток с контролем температур по термометру.

Наконец, в случае, если речь идет о системе обогрева с распределенными источниками тепла (электрические или газовые конвектора, электрические теплые полы, масляные радиаторы отопления, инфракрасные обогреватели и кондиционеры) необходимый температурный режим просто задается на термостате. Все, что требуется от вас — обеспечить пиковую тепловую мощность приборов на уровне пика теплопотерь помещения.

Электрические радиаторы и конвектора снабжаются термостатами. Средняя тепловая мощность автоматически подгоняется по потребность помещения в тепле.

Параметры, влияющие на температуру в помещении

Недостаточно знать технические характеристики батареи и отапливаемую площадь.

Стоит учитывать факторы, которые значительно влияют на утечку тепла:

  • окна;
  • стены;
  • кровля;
  • климат.

Внимание! При вычислении необходимой мощности, следует выполнить расчёт подходящим методом. После, полученный результат умножить на коэффициенты параметров, влияющих на температуру

Окна

Через оконные проёмы теряется вплоть до 35% тепла. Необходимо учитывать как площадь окна, так и вид стеклопакета.

Значение Коэффициент
Площадь окна к площади пола, %
10,0 0,8
30,0 1,0
50,0 1,2
Вид стеклопакета
Трехкамерный 0,85
Двухкамерный 1,0
Двойная рама 1,27

Стены и кровля

Толщина и наличие стен, выходящих на улицу, играют ключевую роль в теплоизоляции.

Значение Коэффициент
Уровень теплоизоляции
Нормальный 1,0
Недостаточный 1,27
Хороший 0,8
Наружные стены
1 1,1
2 1,2
3 1,3

Справка! Нормальной степенью изоляции принято считать стену в пару кирпичей.

Теплопотери меняются, если имеется отапливаемое помещение сверху, а именно:

  • другое помещение — коэффициент 0,7;
  • чердак с отоплением — 0,9;
  • обычный чердак — 1,0.

Для частного дома потери через крышу выше на 50%.

Поэтому следует умножить полученный коэффициент дополнительно на 1,5.

Внимание! При высоте потолка отличной от принятой нормы (2,7 метра) используется дополнительный коэффициент для расчёта секций радиатора. Для его получения следует 2,7 м разделить на фактическую высоту

Климатические факторы

Низкая температура на улице уменьшает объем тепла в помещении.

Значение Коэффициент
Температура, °С
-10 0,7
-15 0,9
-20 1,1
-25 1,3
-30 1,5

Корректировка в зависимости от режима отопительной системы

Производители в паспортных данных указывают максимальную мощность радиаторов: при высокотемпературном режиме использования — температура теплоносителя в подаче 90 о С, в обратке — 70 о С (обозначается 90/70) в помещении при этом должно быть 20 о С. Но в таком режиме современные системы отопления работают очень редко. Обычно используется режим средних мощностей 75/65/20 или даже низкотемпературный с параметрами 55/45/20. Понятно, что требуется расчет откорректировать.

Для учета режима работы системы нужно определить температурный напор системы. Температурный напор — это разница между температурой воздуха и отопительных приборов. При этом температура отопительных приборов считается как среднее арифметическое между значениями подачи и обратки.

Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатора

Чтобы было понятнее произведем расчет чугунных радиаторов отопления для двух режимов: высокотемпературного и низкотемпературного, секции стандартного размера (50см). Помещение то же: 16м 2. Одна чугунная секция в высокотемпературном режиме 90/70/20 обогревает 1,5м 2. Потому нам потребуется 16м 2 /1,5м 2 =10,6шт. Округляем — 11шт. В системе планируется использовать низкотемпературный режим 55/45/20. Теперь найдем температурный напор для каждой из систем:

  • высокотемпературная 90/70/20- (90+70)/2-20=60 о С;
  • низкотемпературный 55/45/20 — (55+45)/2-20=30 о С.

То есть если будет использоваться низкотемпературный режим работы, понадобится в два раза больше секций для обеспечения помещения теплом. Для нашего примера на комнату 16м 2 требуется 22 секции чугунных радиаторов. Большая получается батарея. Это, кстати, одна из причин, почему этот вид отопительных приборов не рекомендуют использовать в сетях с низкими температурами.

При таком расчете можно принять во внимание и желаемую температуру воздуха. Если вы хотите, чтобы в помещении было не 20 о С а, например, 25 о С просто рассчитайте тепловой напор для этого случая и найдите нужный коэффициент

Сделаем расчет все для тех же чугунных радиаторов: параметры получатся 90/70/25. Считаем температурный напор для этого случая (90+70)/2-25=55 о С. Теперь находим соотношение 60 о С/55 о С=1,1. Чтобы обеспечить температуру в 25 о С нужно 11шт*1,1=12,1шт.

Максимально точный вариант расчета

Из приведенных выше расчетов мы увидели, что ни один из них не является идеально точным, т.к. даже для одинаковых помещений результаты пусть и немного, но все равно отличаются.

Если вам нужна максимальная точность вычислений, используйте следующий метод. Он учитывает множество коэффициентов, способных повлиять на эффективность обогрева и прочие значимые показатели.

В целом расчетная формула имеет следующий вид:

T=100 Вт/м2 *A *B * C * D * E * F * G * S,

  • где Т – суммарное количество тепла, необходимое для обогрева рассматриваемой комнаты;
  • S – площадь обогреваемой комнаты.

Остальные коэффициенты нуждаются в более подробном изучении. Так, коэффициент А учитывает особенности остекления помещения.

Особенности остекления помещения

Значения следующие:

  • 1,27 для комнат, окна которых остеклены просто двумя стеклами;
  • 1,0 – для помещений с окнами, оснащенными двойными стеклопакетами;
  • 0,85 – если окна имеют тройной стеклопакет.

Коэффициент В учитывает особенности утепления стен помещения.

Особенности утепления стен помещения

Зависимость следующая:

  • если утепление низкоэффективное, коэффициент принимается равным 1,27;
  • при хорошем утеплении (к примеру, если стены выложены в 2 кирпича либо же целенаправленно утеплены качественным теплоизолятором), используется коэффициент равный 1,0;
  • при высоком уровне утепления – 0,85.

Коэффициент C указывает на соотношение суммарной площади оконных проемов и поверхности пола в комнате.

Соотношение суммарной площади оконных проемов и поверхности пола в комнате

Зависимость выглядит так:

  • при соотношении равном 50% коэффициент С принимается как 1,2;
  • если соотношение составляет 40%, используют коэффициент равный 1,1;
  • при соотношении равном 30% значение коэффициента уменьшают до 1,0;
  • в случае с еще меньшим процентным соотношением используют коэффициенты равные 0,9 (для 20%) и 0,8 (для 10%).

Коэффициент D указывает на среднюю температуру в наиболее холодный период года.

Распределение тепла в комнате при использовании радиаторов

Зависимость выглядит так:

  • если температура составляет -35 и ниже, коэффициент принимается равным 1,5;
  • при температуре до -25 градусов используется значение 1,3;
  • если температура не опускается ниже -20 градусов, расчет ведется с коэффициентом равным 1,1;
  • жителям регионов, в которых температура не опускается ниже -15, следует использовать коэффициент 0,9;
  • если температура зимой не падает ниже -10, считайте с коэффициентом 0,7.

Коэффициент E указывает на количество внешних стен.

Количество внешних стен

Если внешняя стена одна, используйте коэффициент 1,1. При двух стенах увеличьте его до 1,2; при трех – до 1,3; если же внешних стен 4, используйте коэффициент равный 1,4.

Коэффициент F учитывает особенности вышерасположенной комнаты. Зависимость такова:

  • если выше находится не обогреваемое чердачное помещение, коэффициент принимается равным 1,0;
  • если чердак отапливаемый – 0,9;
  • если соседом сверху является отапливаемая жилая комната, коэффициент можно уменьшить до 0,8.

И последний коэффициент формулы – G – учитывает высоту помещения.

Высота комнаты

Порядок следующий:

  • в комнатах с потолками высотой 2,5 м расчет ведется с использованием коэффициента равного 1,0;
  • если помещение имеет 3-метровый потолок, коэффициент увеличивают до 1,05;
  • при высоте потолка в 3,5 м считайте с коэффициентом 1,1;
  • комнаты с 4-метровым потолком рассчитываются с коэффициентом 1,15;
  • при расчете количества секций батареи для обогрева помещения высотой 4,5 м увеличьте коэффициент до 1,2.

Этот расчет учитывает почти все существующие нюансы и позволяет определить необходимое число секций отопительного агрегата с наименьшей погрешностью. В завершение вам останется лишь разделить расчетный показатель на теплоотдачу одной секции батареи (уточните в прилагающемся паспорте) и, конечно же, округлить найденное число до ближайшего целого значения в сторону увеличения.

Калькулятор расчета радиатора отопления

Для удобства, все эти параметры внесены в специальный калькулятор расчета радиаторов отопления. Достаточно указать все запрашиваемые параметры — и нажатие на кнопку «РАССЧИТАТЬ» сразу даст искомый результат:

Советы по энергосбережениюСоветы по энергосбережению

Удачных расчетов!

Что такое тепловой расчет?

Если говорить просто, тепловой расчёт помогает точно узнать, сколько тепла хранит и теряет здание, и сколько энергии должно вырабатывать отопление, чтобы поддерживать в жилье комфортные условия.

Оценивая теплопотери и степень теплоснабжения, учитываются следующие факторы:

  1. Какой это объект: сколько в нём этажей, наличие угловых комнат, жилой он или производственный и т. д.
  2. Сколько человек будет «обитать» в здании.
  3. Важная деталь – это площадь остекления. И размеры кровли, стен, пола, дверей, высота потолков и т. д.
  4. Какова продолжительность отопительного сезона, климатические характеристики региона.
  5. По СНиПам определяют нормы температур, которые должны быть в помещениях.
  6. Толщина стен, перекрытий, выбранные теплоизоляторы и их свойства.

Могут учитываться и другие условия и особенности, например, для производственных объектов считаются рабочие и выходные дни, мощность и тип вентиляции, ориентация жилья по сторонам света и др.