R134a или r600a: какой хладагент лучше, выгоднее, эффективнее

Оглавление

Фреон R134A: характеристики

В таблице представлены технические данные вещества, которые помогут сравнить хладагент с имеющимися на рынке аналогами.

Наименование показателя Числовое значение, мера измерения
Температура кипения -26,5 градусов
Критическое давление 4,06 МПа
Критическая температура 101,5 градусов
Озоноразрушающий потенциал 0 ODP
Молекулярный вес 102,03 г/моль
Плотность жидкости 126 кг/м3
Плотность газа 5,28 кг м3
Растворимость в воде 0,21 об/об

Благодаря этим показателям фреон R134A применяют в автомобилестроении, промышленности, при создании бытовой холодильной техники.

В состав фреона R134A входят:

  • хладон 134 — 62,9%;
  • хладон 218 – 32,6%;
  • H-бутан – 4,5%.

Источник

Методы заправки кондиционеров

Прежде всего, мастеру понадобится фреон, оборудование и инструменты. У него должен быть:

  • манометрический коллектор;
  • ключи, набор ручного инструмента;
  • газ, указанный на табличке агрегата.

Если выбран сложный путь к цели, обязательно потребуется присутствие электронных весов, станции эвакуации хладагента, вакуумного насоса. Способов заправки системы климат-контроля фреоном существует несколько. Простой вариант не дает возможности ответить на вопрос, как определить количество фреона в кондиционере абсолютно точно, но он поможет понять, какая возникла проблема — недостаток или переизбыток хладона в системе. Или она отсутствует, так как все находится в норме.

Заправка по температуре и давлению

Как уже было отмечено, способ определения только по давлению нельзя считать надежным. Как правило, он используется специалистами, которые уже способны определить количество «на глазок», для них единственным ориентиром является напор.

Первым делом убеждаются в том, что утечки отсутствуют. В противном случае время и силы будут потрачены впустую. Сама процедура дозаправки хладагента состоит из нескольких последовательных этапов.

  1. Шланг манометра крана НД (слева на коллекторе) подсоединяют к сервисному порту, среднюю трубку, имеющую желтый цвет, — к баллону с газом.
  2. Затем открывают вентиль резервуара, продувают шланги, ненадолго открыв кран высокого давления, на коллекторе он находится справа.
  3. Баллон с фреоном ставят на весы, потом показания обнуляют. Если будет заливаться R-410a, то емкость перед началом операции ставят дном вверх.
  4. Кондиционер включают на охлаждение, с сервисного вентиля откручивают крышку, затем его открывают. Затем отворачивают кран НД так, чтобы фреон шел небольшими порциями (около 30 г). Контролируют заливку с помощью электронных весов.
  5. После каждой порции кран перекрывают, затем в течение одной-двух минут измеряют температуру газового патрубка. Если нужно, то подают следующую порцию. Задача в этом случае — снижение температуры до идеальной — до 5-8°.

После завершения дозаправки по очереди закрывают краны: сначала коллектора, потом сервисного порта и баллона.

Заправка хладоном по весу

Опытные мастера способны быстро определить остаток хладагента, а затем заправить его в систему с поразительной точностью. Для новичков этот метод недоступен. Для них самым лучшим способом будет избавление от старого газа и заправка новой, свежей порции фреона. Однако перед заправкой необходимо выяснить причину потери хладагента, а затем устранить ее. Идеальный метод — опрессовка азотом, который закачивают под давлением, максимально возможным для конкретного кондиционера (25-30 бар).

  1. Сначала сливают старый хладон: либо откручивают трубку, либо избавляются от газа через сервисный порт, открыв оба крана. Чтобы не лишить контур масла, операцию делают медленно.
  2. После завершения первого этапа, краны закрывают. Затем присоединяют синий (левый) шланг НД манометрической станции к сервисному порту, убеждаются, что вентили ее также закрыты.
  3. Желтый шланг подключают к вакуумному насосу, потом агрегат включают, открывают кран НД и вентили сервисных портов. Следят за вакуумметром: его стрелка должна упасть до -5 бар.
  4. Вакуумирование продолжают около 20 минут. После окончания этого отрезка насос выключают, но за показаниями манометра следят еще полчаса. В протечке убеждаются в том случае, если стрелка начинает движение к нулю.
  5. Шланг с насоса присоединяют к баллону, левый вентиль станции закрывают. Затем на несколько открывают кран резервуара, продувая шланг. Для этого на секунду приоткрывают правый кран коллектора (высокого давления).
  6. На весы устанавливают баллон (дном вверх, если R-410a), обнуляют показания. После этого опять открывают левый вентиль станции, начиная на дисплее отслеживать уменьшение веса баллона.

Когда дисплей подтверждает, что емкость лишилась требуемого количества фреона, кран закрывают. Краны на сервисных портах закрывают, патрубок отсоединяют и приступают к проверке работоспособности сплит-системы.

Как определить количество фреона в кондиционере? Нельзя сказать, что эти процедуры элементарны, но суперсложной операцию с манометрическим коллектором и термометром тоже не назвать. Если нет уверенности в своих силах, то лучше сначала постараться «найти» ее. Может быть, поиски закончатся после просмотра следующего видео:

Фреон R134A: характеристики

В таблице представлены технические данные вещества, которые помогут сравнить хладагент с имеющимися на рынке аналогами.

Наименование показателя Числовое значение, мера измерения
Температура кипения -26,5 градусов
Критическое давление 4,06 МПа
Критическая температура 101,5 градусов
Озоноразрушающий потенциал 0 ODP
Молекулярный вес 102,03 г/моль
Плотность жидкости 126 кг/м3
Плотность газа 5,28 кг м3
Растворимость в воде 0,21 об/об

Благодаря этим показателям фреон R134A применяют в автомобилестроении, промышленности, при создании бытовой холодильной техники.

В состав фреона R134A входят:

  • хладон 134 — 62,9%;
  • хладон 218 – 32,6%;
  • H-бутан – 4,5%.

Схема холодильного цикла

Охлаждение воздуха в кондиционере и другом холодильном оборудовании обеспечивается циркуляцией, кипением и конденсацией фреона в замкнутой системе. Кипение происходит при низком давлении и температуре, а конденсация при высоком давлении и температуре.

Такой способ работы называется холодильным циклом компрессионного типа, так как для движения хладагента и повышения давления в системе используется компрессор. Рассмотрим схему компрессионного цикла поэтапно:

  1. При выходе из испарителя вещество пребывает в состоянии пара с низким давлением и температурой (участок 1-1).
  2. Затем пар поступает в компрессионную установку, которая повышает его давление до 15–25 атмосфер и температуру в среднем до 80 °C (участок 1-2).
  3. В конденсаторе хладагент охлаждается и конденсируется, то есть переходит в жидкое состояние. Конденсация производится с воздушным или водяным охлаждением в зависимости от вида установки (участок 2-3).
  4. При выходе из конденсатора, фреон попадает в испаритель (участок 3-4), где, в результате снижения давления, начинает кипеть и переходит в газообразное состояние. В испарителе фреон забирает тепло из воздуха, благодаря чему воздух охлаждается (участок 4-1).
  5. Затем хладагент движется в компрессор и цикл возобновляется (участок 1-1).

Все холодильные циклы состоят из двух областей — с низким и высоким уровнем давления. За счёт разницы давления происходит преобразование фреона и его движение по системе. При этом чем выше уровень давления, тем выше температура кипения.

Компрессионный цикл охлаждения используется при работе многих холодильных систем. Хотя кондиционеры и холодильники различаются по конструкции и назначению, они работают по единственному принципу.

Энтальпия хладагента

Происходящий в холодильной машине цикл охлаждения удобно изображать графически. На диаграмме показано соотношение давления и теплосодержания (энтальпии) хладагента.

Энтальпия — это функция состояния, приращение которой при процессе с постоянным давлением равно теплоте, полученной системой.

На диаграмме показана кривая насыщения хладагента.

  • Левая ветвь кривой соответствует насыщенной жидкости
  • Правая часть соответствует насыщенному пару.
  • В критической точке ветви кривой соединяются, и вещество может находиться и в жидком, и в газообразном состоянии.
  • Внутри кривой — зона, соответствующая смеси пара и жидкости.
  • Слева от кривой (в области меньшей энтальпии) — переохлажденная жидкость.
  • Справа от кривой (в области большей энтальпии) — перегретый пар.

Теоретический цикл охлаждения несколько отличается от реального. В действительности происходят потери давления на разных этапах перекачки хладагента, снижающие эффективность охлаждения. Это не учитывается в идеальном цикле

Хладагенты R-404a

Введение

R-404A представляет собои? смесь хладагентов на базе ГФУ, состоящую из ГФУ-143а / 125 / 134а (52 / 44 / 4%). При поступлении на рынок в начале 1994. года R-404A первоначально использовался в новом оборудовании, разработанном под R-502, в коммерческих холодильных установках, рассчитанных на низкие и средние температуры испарения.

Со временем R-404A стал стандартнои? рабочеи? жидкостью во многих транспортных холодильных системах, а также широко применяется в промышленных холодильниках.

R-404A, имеет нулевои? потенциал разрушения озонового слоя (ПРОС), а его потенциал глобального потепления (ПГП) составляет 3750 (ПГП углекислого газа равен 1), что значительно ниже, чем ПГП R-502, равного 5600.

R-404A по классификации ASHRAE относится к классу А1/А1 как в жидкои?, так и в газообразнои? фазе. Допустимыи? уровень воздеи?ствия R-404A (определяется как предельно допустимые регулярно воздеи?ствующие концентрации) составляет 1000 частеи?/млн., т.е. не отличается от R-502.

Будучи смесью, близкои? к азеотропнои?, R-404A, практически не меняет своих эксплуатационных характеристик даже при неоднократных утечках и перезарядках. Благодаря этим свои?ствам он является идеальным хладагентом там, где необходимы безопасность и неизменность эксплуатационных характеристик.

Область применения

Хладагент рекомендуется применять в низко- и среднетемпературных коммерческих холодильных установках, транспортных холодильных установках, в том числе контеи?нерах, а также в низкотемпературном промышленном холодильном оборудовании.

Эксплуатационные характеристики R-404A

В зависимости от условии? эксплуатации R-404A обеспечивает повышение холодопроизводительности на 4-5 %, повышая при этом энергосбережение до 2 % и снижая на 8% температуру нагнетания компрессора, по сравнению с R-502 (последнии? критерии? связан с удлинением срока эксплуатации компрессора).
Хотя R-404A имеет ПГП 0,94, общее эквивалентное воздеи?ствие такои? холодильнои? системы на потепление (прямои? и косвенныи? вклад в парниковыи? эффект) ниже, чем у R-502.

Обращение с R-404A

  • Испытания показали, что для R-404A требуется полиолэфирная смазка.
  • R-404A представляет собои? смесь, близкую к азеотропнои?, с температурным градиентом менее 0,5К.
  • R-404A нельзя смешивать с воздухом для проведения испытании? под давлением на предмет обнаружения утечек.

Характеристики

Характеристики
Ед. изм.
R-404a

Средняя молекулярная масса

97,6

Температура кипения при 1 атм
C
-46,3*

Плотность насыщенных паров при температуре кипения
кг/мЗ
5,3

Плотность насыщеннои? жидкости при 25°С
кг/дмЗ
1,01

Критическая температура
C
72.0

Критическое давление
кг/см2
37,8

Скрытая теплота испарения при температуре кипения
БТЕ/фунт
86.0

Удельная теплоемкость жидкости при 25°С
БТЕ/фунт-oF
0,39

Удельная теплоемкость паров при 1 атм.
БТЕ/фунт-oF
0,18

Температурныий перепад
C
-16,9

Пределы воспламенения на воздухе

Не воспламеняется

Потенциал разрушения озона (ODP, для ХФУ 11 = 1,0)

0,000

Влияние галоидоуглерода на всеобщее потепление (HGWP, для ХФУ 11 = 1,0)

0,96

Группа безопасности по классификации ASHRAE

А1/А1

Допустимое содержание паров в рабочем помещении (WEEL) (восьмичасовои? рабочии? день/среднии? вес)

1000 м.д.

* — Температура начала кипения

R-290 (Пропан)

Один из наиболее перспективных хладагентов. Имеет показатели GWP и ODP равные 3 и 0 соответственно. Единственный недостаток – высокая пожароопасность. Применяется как фреон в:

  • Бытовых холодильниках;
  • Коммерческих и промышленных холодильных и морозильных установках;
  • Кондиционерах большой производительности.

Газ R290 имеет хорошие перспективы для применения в бытовых кондиционерах. Он не токсичен, химически стабилен. Вероятность возгорания у него не выше, чем у изобутана (R600a). Серьезно рассматривается многими организациями как замена хладагентам с высокими потенциалами воздействия на озоновый слой и глобальное потепление.

Описание и применение фреона R134A

Все фреоны представляют собой вещества, закипающие при низком давлении, и выпадающие в конденсат при высоком. Эти свойства позволяют успешно использовать хладагенты при создании климатического и холодильного оборудования.

Формула тетрафторэтана

Существуют различные виды хладонов:

  • хлорфторуглеводороды;
  • фторуглероды;
  • хлорфторуглероды;
  • бромфторуглероды;
  • фторуглеводороды.

К последним относится фреон R134A – хладагент, изготовленный без использования хлора. Бесцветный газ имеет химическое наименование – тетрафторэтан.

Чаще всего хладагентом заправляют кондиционеры в автомобилях, промышленные холодильные установки и бытовое климатическое оборудование. Его применяют в процессе создания других марок фреона. Хладагент предназначен для работы в среднетемпературном диапазоне.

Фреон используют в пневматическом оружии, заправляют в баллоны для пылеочистительных устройств, применяют для охлаждения воды в промышленных масштабах. В жидком состоянии вещество широко используется для охлаждения персональных компьютеров (системы для разгона).

Хладон имеет российский аналог, носящий название R-600A. Несмотря на схожие свойства фреона R134A и R12, их нельзя смешивать. Такие действия могут стать причиной выхода оборудования из строя. Отечественные производители утверждают, что их продукт создавался с учетом эксплуатации российских компрессоров.

Способы заправки кондиционера

Заправку кондиционеров фреоном рекомендуют производить не реже, чем раз в 1.5-2 года. За это время происходит естественная утечка значительной части хладагента, которую необходимо восполнить. Эксплуатация охладителей без дозаправки в течение 2 лет и более может привести к поломке устройства из-за перегрева и износа деталей, а также утечки масла.

Дозаправкой устройств кондиционирования занимаются специализированные службы. Однако если есть необходимые инструменты, эту процедуру можно провести самостоятельно.

Новичок может сделать эту процедуру двумя способами:

  • По давлению. Чтобы узнать количество фреона, нужно посмотреть в инструкцию кондиционера — там будет указан уровень давления в системе. Затем необходимо присоединить к устройству коллектор — он покажет реальный уровень давления в охладителе. Путём вычитания полученной величины из параметров, указанных в документах, несложно узнать необходимое количество вещества для дозаправки.
  • По массе. При полной заправке кондиционера, можно узнать необходимый объем по массе. Для этого также нужно обратиться к документации. При заполнении устройства фреоном, баллон с хладагентом для кондиционера ставится на точные весы. В процессе перекачивания, нужно внимательно следить за весом баллона и при восполнении недостатка вещества, сразу отключать систему.

Заправка кондиционера: алгоритм действий

Перед тем как заправить систему кондиционирования фреоном, нужно подобрать необходимые инструменты и материалы. Для этого потребуется манометр, баллон с фреоном, вакуумный насос, а также весы, по которым будет определяться объем хладагента в кондиционере.

Алгоритм действий при заправке кондиционера:

Сначала нужно отключить охладитель от электричества и определить необходимое для заправки количество фреона по весу или давлению в системе.
А также нужно «продуть» трубки с помощью азота, чтобы удалить из системы лишние примеси и убедиться в герметичности системы

Это важно сделать в том случае, если существует подозрение на утечку хладагента из-за повреждения системы.
Затем нужно закрыть трехходовой клапан по часовой стрелке.
Чтобы определить уровень давления и совершить дозаправку, нужно присоединить к штуцеру манометрический коллектор.

Диагностика и дозаправка

Ford Focus Hatchback ,, синий ,, Бортжурнал антибактериальная обработка кондиционера Определить утечки и сколько фреона в кондиционере осталось может специалист с помощью специального оборудования. Основным показателем количества газа в системе является его давление. Проверяют давление при помощи манометрической станции.

Как правило, такую проверку осуществляют в теплое время года со стороны всасывания, т.е по синему манометру. Шланг от прибора подключается к сервисному вентилю, расположенному на стороне всасывания, и запускается кондиционер. Через 10-15 минут на манометре будут корректные показания.

Таблица давлений фреона в кондиционере для конкретной марки устройства находится на внешнем блоке климатической техники.

  • Discharge side – это рабочее давление на стороне нагнетания.
  • Suction side – это показатель рабочего давления на стороне всасывания.

Следует учесть, что показатели давления меняются в зависимости от температуры окружающего воздуха и температуры в помещении. Ниже представлены таблицы зависимости давления от температуры воздуха для наиболее востребованных в климатической технике газов.

Многие владельцы климатической техники задают вопрос, как определить какой фреон в кондиционере, когда и сколько его необходимо заправлять?

Для того чтобы узнать тип применяющегося газа следует внимательно посмотреть на заводскую маркировку, которая находится на внешнем блоке устройства.

В строке с надписью Refrigerant находится марка хладагента, использующаяся в конкретной модели климатической техники. В нашем случае это R22.

Заправку следует осуществлять при следующих признаках:

  • Из внутреннего блока не поступает охлажденный воздух при работающем аппарате.
  • На трубках появляется наледь.

Дозаправка сплит-системы также потребуется при переустановке климатической техники и после ремонта компрессорного блока.

Определенных норм заправки бытовых сплит-систем не существует. Специалист ориентируется по показаниям манометрической станции, весов и на основании собственного опыта. Именно поэтому для заправки климатической техники необходимо приглашать только квалифицированных специалистов, которые дают гарантию на выполнение своих работ.

Многие спрашивают: сколько стоит заправка кондиционера фреоном. Стоимость заправки кондиционера редко бывает фиксированной. Цена включает в себя стоимость работ плюс стоимость хладагента. Кроме этих факторов на ценообразование играет конкуренция и доброе имя компании.

Средняя стоимость заправки кондиционера в Москве:

  • R22 заправка – 1500 руб. работа + стоимость газа, из расчета 300 руб.100 грамм газа.
  • R410А заправка – 1500 руб. работа + стоимость газа, из расчета 500 руб. 100 грамм хладагента.

В самостоятельной заправке сплит-системы хладагентом нет ничего сложного и страшного. Достаточно иметь оборудование и некоторые знания. Но следует понимать, что в результате неправильной заправки сплит-система может выйти из строя. Стоимость услуг с гарантией качества значительно ниже цены нового кондиционера, поэтому работу по заправке (дозаправке) кондиционера лучше всего доверить профессионалам.

Основные преимущества и недостатки

Современный хладагент R-410A относится к группе специфических гидрофторуглеродов. Его состав рассматривается всемирными организациями как озонобезопасный. Касательно минимального температурного скольжения — этот параметр приравнивается к 0,15 К, благодаря чему он входит в категорию однокомпонентных хладонов. Широкий спектр применения фреона R-410A обусловлен тем, что он обладает множественными преимуществами:

  • Если из-за поломки газ вышел из сосуда, то его можно легко восполнить без потери качества самого хладагента.
  • Перед производителями открываются более широкие горизонты в сфере уменьшения энергопотребления техники.
  • Нет необходимости устанавливать мощный, дорогостоящий компрессор, так как теплообменник обладает высоким уровнем удельной холодопроизводительности.
  • Существенно возросла эффективность работы систем, так как фреон R-410A обладает низкой вязкостью и хорошей теплопроводностью.

Отрицательных сторон не так уж и много, но все они должны быть учтены не только опытными мастерами, но и обычными пользователями, которые используют бытовую технику с фреоном. К основным недостаткам относятся следующие:

  • Из-за разности давления по отношению к нагнетанию и всасыванию фреона уровень КПД компрессора может быть снижен.
  • Профессионалы отмечают быстрый износ подшипников, который обусловлен высоким рабочим давлением в системе.
  • Использование фреона влияет на то, что корпус бытовой техники должен обладать повышенной герметичностью. Итоговая толщина стенок медных труб рабочей магистрали должна быть больше, нежели для привычного хладагента R22. Минимальный показатель должен находиться в пределах 0,9 мм. Стоит отметить, что большой процент содержания меди ведёт к существенному удорожанию эксплуатируемой системы.
  • В кондиционерах используется высококачественное полиэфирное масло, которое стоит гораздо дороже, нежели минеральное.
  • Этот вид хладагента является несовместимым с элементами климатического оборудования. Правило касается тех деталей, которые изготовлены из эластомеров и чувствительных к пентафторэтану, дифторметану материалов.

Зачем и можно ли менять R134a на R600a?

Со временем производительность холодильного оборудования на R134a падает. Это связано в основном с изношенностью компонентов системы. Многие холодильщики предлагают менять фреон на R600a.

Есть мнение, что после этого быстро выходит из строя компрессор. Но… давайте разберемся. Если холодильник начал плохо охлаждать, то велика вероятность что компрессор сильно изношен. Использование R600a улучшит хладопроизводительность. Но компрессор со временем сломается, но по причине износа, а не из-за перехода на новый фреон.

Еще один аргумент в пользу замены – шум. В системах под фреон R134a ставят более мощные насосы, чем на оборудование под R600a. Соответственно, уровень шума у них выше. после замены насос не так интенсивно работает, техника, соответственно, работает тише.

Стандартная тара для фреона R600a, нетто — 13,6 кг.

Особенности хладагента

Газ R134A лучше применять в средне- и высокотемпературных холодильных агрегатах. По сравнению с аналогами, он лучше справляется с ежегодным повышением температур, что позволяет его использовать в особых герметичных системах охлаждения.

Другие особенности бесцветного газа:

  • Хладагент нельзя смешивать с традиционными синтетическими и минеральными маслами. Фреон R134A в них не растворяется. Масло не транспортируется по контуру охлаждения, оседая в теплообменниках и препятствуя теплопередаче. Специально для нового хладагента были разработаны полиалкиленгликолевые масла. Они имеют высокую гигроскопичность и низкую диэлектрическую проводимость.
  • При модернизации оборудования необходимо заменить компрессор, иначе холодильная установка будет обладать пониженной холодопроизводительностью.
  • Имеет перспективы использование хладагента в водоохладительных системах с компрессорами центробежного и винтового типа.
  • Хладагент проще заправлять после утечки, в сравнении с популярными аналогами.
  • Молекула R134A имеет меньшие размеры в сравнении с R12, поэтому к герметичности системы, и особенно к местам сочленений предъявляются повышенные требования.

Хладон R134A может использоваться на среднетемпературном оборудовании в России, где запрещен R12. Однако заменить последний можно не во всем. Некоторые агрегаты могут работать при температуре кипения от -15 градусов и выше. В этих ситуациях хладагент R134A обладает меньшей хладопроизводительностью: на 6% ниже, чем у R12. В этих случаях используют компрессор, обладающий увеличенным часовым объемом.

Таким образом, для использования R134A необходимы:

  • гигроскопичные масла;
  • подходящие компрессоры;
  • модернизированные узлы холодильного оборудования.

При тестировании техники с эфирными маслами применялись обычные металлические элементы. При использовании гибких шлангов эластомеры подбираются отдельно. Это условие обеспечивает минимальную проницаемость стенок и наименьшее количество остаточной влаги.

При грамотном подходе к использованию хладагента проблем при работе с ним не возникает.