Переносное заземление

Оглавление

Устройство переносных заземлений

Переносные заземления состоят из: проводников для заземления и закорачивания между собой токоведущих частей разных фаз электроустановки и зажимов для присоединения проводников к заземляющей проводке и к токоведущим частям.

Заземляющие и закорачивающие проводники изготовляются из медного многожильного гибкого голого провода.

Переносные заземления выполняются как трехфазными (для закорачивания всех трех фаз и заземления с общим заземляющим проводником), так и однофазными (для заземления токоведущих частей каждой фазы отдельно). Однофазные переносные заземления применяются в электроустановках напряжением выше 110 кВ, поскольку там расстояния между фазами велики и закорачивающие проводники получаются чрезмерно длинными и тяжелыми.

Из чего изготавливают

Основным материалом для создания переносного заземления является медь и алюминий. Алюминий встречается достаточно редко, так как не всегда может выдержать высокую нагрузку, и стоит дороже. Чаще всего токопроводящая часть делается из медных проводов. Сам провод не всегда оснащается изоляцией. Изолированный проводник имеет прозрачную оболочку. При испытаниях проверяют этот момент, поскольку изоляция может помешать обнаружить разрыв жил провода.

Для того чтобы устройство можно было закрепить к электроприбору, на конце каждого провода имеются специальные струбцины. Зажимы такой конструкции позволяют надежно зафиксировать изоляцию.

Для того чтобы можно было закрепить с помощью струбцин заземление, нужна изолирующая штанга и специальное ушко на струбцине. Возможно применение и другой конструкции с барашком, но встречается она значительно реже.

Провода никогда не должны соединяться на скрутках. Для надежного контакта между ними и зажимами соединение выполняется при помощи опрессовки, сварки или болтовых соединений.

Внимание! Нельзя паять провода, предназначенные для заземления

Важность сроков применения

Любые предметы имеют свои сроки эксплуатации, например, для переносного заземления они составляют не более 8 лет, согласно требованиям ГОСТ.
Необходимость соблюдения сроков испытания переносных заземлений объясняется достаточно просто. Если не придерживаться их, возрастет риск опасности при работах. Оборудование должно находиться в исправном состоянии, что необходимо регулярно проверять.

При неисправности переносных конструкций, их заменяют. Соблюдение эксплуатационных сроков помогает избежать многих проблем, которые могут быть связаны с обветшалостью конструкций. Замену производят, если в результате испытаний обнаружено, что оборвано более 5% жил, или провода расплавлены, нарушена прочность контактов.

Требования стандартов

Проверку переносных заземлений нужно проводить регулярно, однако сроки ее регламентированы нормативами. Стандарты настаивают на частоте испытаний не реже чем один раз в полгода. Кроме этого, ГОСТ требует проводить внешний осмотр переносных заземлений еще как минимум два раза в этот же временной период. Исследования проводят чаще, если заземление применяется для медицинских приборов, аппаратов, использующихся для восстановления здоровья, проведения специальной терапии.

https://youtube.com/watch?v=hpcHgm_dyDQ

Те же требования предъявляются к другим устройствам, влияющим на функционирование человеческого организма или используемых длительное время.
Относится это правило и к источникам повышенной опасности. Если планируется перенос заземления на другой прибор и подключение к новому контуру, испытания переносных заземлений нужно будет проводить снова. При перемещении заземления сроки исчисляются заново. Исключением является только общий эксплуатационный срок.

При применении системы с глухозаземленной нейтралью проверяют не только ее, но и цепь «фаза-ноль».

Для электроустановок и распределительных устройств

Существует большое количество переносных приборов, предназначенных для защиты обслуживающего и оперативного персонала от поражения током в цепях с действующим напряжением до 1000 Вольт. При работе с электроустановками и распределительными устройствами (РУ) применяются специальные временные заземляющие комплекты, отличающиеся своей простотой, долговечностью и удобством применения. Для ознакомления с ними предлагаем рассмотреть рабочие характеристики некоторых из них.


Установка переносного заземления в распределительном устройстве

Заземления переносные линейные ЗПЛ подстанционные подобно обычным приспособлениям для временного соединения с землей состоят из фазных замыкающих струбцин, имеющихся на обоих концах медных проводников. Место куда следует присоединять в распределительных устройствах такие ПЗ, выбирается исходя из возможности создания надежного зацепления (контакта). Чаще всего – это фазные шинки подводящих линейных цепей или их ответвления на соседние распределительные шкафы.


Комплект переносного заземления из четырех заземлителей

На ПЗ для РУ имеются специальные рукоятки, предназначенные для защиты оператора от прикосновения с отключенными токоведущими частями электроустановок. По всем своим характеристикам они полностью соответствуют типовым заземляющим конструкциям. Также отметим, что для действующих установок с рабочим напряжением выше 1000 Вольт, переносные защитные приспособления накладываются на все предусмотренные в ней токоведущие провода. Защищенные с их помощью участки должны четко отделяться от токоведущих шин путем организации хорошо различимого разрыва. Он обычно обустраивается за счет выключателей, разъединителей или предохранителей, отключенное положение которых прекрасно видно с места проведения ремонтных работ.

Установка переносного заземления на выводах трансформатора

В соответствие с требованиями основных положений ТБ при наличии риска появления наведенного напряжения временное переносное заземление обязательно устанавливается в зонах всех работающих на участке бригад. В большинстве современных образцов РУ для наложения защитного заземления предусмотрены специальные места, присоединиться к которым удается без всяких усилий. Они маркируются черной краской, которую перед наложением струбцины следует тщательно удалить (до появления чистой стальной поверхности).

Монтаж ПЗ на вводе в трансформатор

Во всем остальном порядок подключения заземляющего устройства аналогичен уже рассмотренным ранее образцам. На довольно распространенный вопрос о том, кому разрешено устанавливать и снимать переносные заземления, существует однозначный ответ.

Для электроустановок с рабочим напряжением от 1000 Вольт и выше к проведению этих операций должно привлекаться несколько лиц. Одно из них назначается непосредственным производителем работ, а второе – наблюдающим, который должен иметь группу допуска не ниже 4-ой.

Перед началом оперативных переключений на участке, подлежащем заземлению, специалист 3 группы обязательно проходит инструктаж, а также тщательно изучает схему электроустановки и порядок предстоящих коммутаций. Все основные операции по подсоединению и отключению заземляющих элементов осуществляются тем же специалистом с 3-ей группой допуска.

Защита передвижных установок

Все, что было рассмотрено ранее, традиционно относится к обычному стационарному оборудованию. Иной подход наблюдается при необходимости заземления передвижных электроустановок, для которых выполнение требований по переходному сопротивлению несколько затруднено. В связи с этим ПУЭ допускают повышение его величины до предельного значения, равного 25-ти Омам.

Последнее требование справедливо лишь для установок с автономным питанием, имеющим изолированную от земли нейтраль (в качестве примера может быть приведено ГРПШ).

Этот вид заземляющих устройств традиционно применяется для тех образцов оборудования, которые не являются источниками питания для остальных установок и не склонны к искрообразованию. Другая область их применения – передвижные агрегаты, оснащенные собственными стационарными заземлителями, не используемыми в данный момент. Передвижные установки с автономным питанием из-за возможного образования трущихся сочленений и изолированной от земли нейтрали подлежат регулярному освидетельствованию в части состояния защитной оболочки (изоляционного покрытия).

Провод

Чаще всего провод заземления имеет сечение от 25 мм2 и применяется для трехфазных систем. Для каждой фазы, размещенной на воздушной линии, предусматривается свой провод. При возникновении случайного или непредусмотренного напряжения задачей переносного заземления является отведение его на специальный провод и создание короткого замыкания, предохраняющего рабочих от опасности.

Применять такие переносные провода можно при температуре от -45 до +45 градусов Цельсия. Желательная относительная влажность должна составлять 80% при температуре окружающей среды 20 градусов.

Напряжение до 1000 В

Сечение провода переносного заземления подпадает под строгие технические требования и стандарты. Оно должно выдерживать нагрев в случае возникновения замыкания на трехфазном и однофазном источнике. Провод заземления, используемый в электроустановках с напряжением меньше 1000 В, должен иметь сечение не меньше 16 кв. мм.

Нельзя применять провода, имеющие меньшее сечение. Если напряжение в электроустановке не превышает 6-10 кВ, сечение проводников может колебаться от 120-185 мм2. Такие элементы не слишком удобны, так как имеют большую массу. Можно использовать несколько переносных заземлений с меньшим сечением, они устанавливаются напротив друг друга.

Напряжение выше 1000 В

Если минимальное сечение у проводов переносных заземлений не меньше 16 мм2, то есть переносное заземление рассчитано на величину выше 1000 В, минимальное значение должно быть не меньше 25 мм2. Расчет сечения должен проводиться по следующей формуле:
S = ( Iуст √tф ) / 272.

  • Iуст – является обозначением тока короткого замыкания;
  • tф – время, измеряющееся в секундах;
  • 272– коэффициент, который может отличаться для разных металлов. При точном расчете для меди он равен 250. В данном случае он взят с запасом.

Для того чтобы не изготавливать несколько заземлителей, единицу времени в формулу нужно включать максимальную; следовательно, провод заземления будет более толстым. Если сеть имеет заземляющую нейтраль, то рассчитывать диаметр сечения требуется по току одной фазы. Важным аспектом является обеспечение термической устойчивости, если образуется двухфазное замыкание.

Не разрешается применять для создания заземления обычный изолированный кабель. Изоляция не позволит обнаружить механические повреждения жил, если таковые появятся. Перетирание жил приводит к прожиганию полупроводника, использовать поврежденный кабель нельзя.

Портативное заземление должно быть оснащено специальными зажимами. При помощи этих элементов переносная конструкция закрепляется специальной штангой на токопроводящих частях и позволяет создать надежное заземление. Проводники должны быть присоединены к зажимам без использования переходных наконечников: это обеспечит большую площадь касания и надежность соединения. Отсутствие слабых контактов не позволит конструкции выгореть при воздействии на нее большого напряжения.

Ограничиваться пайкой нельзя, так как при работе с токами выше 1000 будет существенный нагрев, пайка ослабнет, и переносная конструкция будет разрушена.

Установка и снятие переносного заземления

Процесс наложения и снятия заземления идентичен для всех уровней напряжения. Существуют отличия только в количестве людей выполняющих данные операции. В электроустановках до 1 кВ установка и снятие заземлителя проводится единолично, а при напряжении выше 1 кВ процедура производится вдвоём. Один человек выступает в роли контролирующего лица, а второй является исполнителем.


Процесс установки и монтажа ПЗ

Последовательность действий при установке ПЗ:

  1. Убедиться в целостности устанавливаемого заземления;
  2. Проверить отсутствие напряжения на электроустановке, которая подлежит заземлению;
  3. Подсоединить струбцину ПЗ к контуру заземления;
  4. Наложить заземляющие проводники на токоведущие элементы.

Операции по снятию переносного заземления, проводятся в обратном порядке.Все действия необходимо осуществлять с использованием диэлектрических перчаток и штанг, а также индивидуальных защитных средств. В электрической установке до 1 кВ допускается использовать только изолирующие перчатки. При напряжении токоведущих элементов более 1000 В, требуется одновременное применение перчаток и штанг.

Проверка отсутствия напряжения на участке распределительной установки осуществляется указателем напряжения.

Допускается параллельная установка портативных заземлителей в электрической сети напряжением более шести тысяч вольт. Это обусловлено тем, что требуемые сечения проводов достигают значительных величин. И приводит к увеличению массы и размеров ПЗ, что влечёт за собой трудности при их эксплуатации.

Что это такое, и почему его называют временным (переносным)

Оборудование относится к типу защитных устройств, обеспечивающих безопасную работу в подключенных электроустановках. Кроме того, переносное заземление может (а точнее — должно) применяться при выполнении работ в полевых условиях: на временных объектах, которые штатного соединения с «землей» не имеют. Например, при проведении сварочных работ на территории, где нет энергоснабжения, и площадка не оборудована в соответствие с Правилами устройства электроустановок. В этом случае заземляется и генерирующее и рабочее оборудование.

Комплект временного заземления представляет собой набор гибких медных проводников (кабель без изоляции). На концах проводников расположены зажимы с постоянной фиксацией: типа струбцин.

Как правило, проводники соединены в три связанные линии (для трехфазного оборудования). При замыкании фаз между собой, повышается вероятность срабатывания защиты, если на линию случайно будет подано напряжение. Струбцины, которые подключаются к питающим контактам, оборудуются изолирующими штангами (при работе с напряжением свыше 1000 вольт). Если во время подключения, шина окажется под напряжением, поражение электротоком не произойдет.

Существуют комплекты и для однофазных электроустановок, состоящие из одного проводника с зажимами на концах.

Установка переносного заземления предусмотрена в случаях, когда выведенный в ремонт участок полностью отключается от каких-либо кабельных линий, включая «земляную» шину. При случайной подаче напряжения (а во время ремонта — это вполне возможно), устройство обеспечит короткое замыкание на физическую землю, и приведет к срабатыванию защитного автомата.

Еще одна функция переносного заземления — защита от наведенного напряжения. После обесточивания электроустановки, на питающем кабеле могут возникнуть наведенные токи, от проложенных рядом силовых линий. В обычном состоянии, этому препятствует рабочая «земля».

Из чего состоит заземление

  1. Внешний контур заземления. Располагается за пределами помещений, непосредственно в грунте. Представляет собой пространственную конструкцию из электродов (заземлителей), соединенных между собой неразделимым проводником.
  2. Внутренний контур заземления. Токопроводящая шина, размещенная внутри здания. Охватывает периметр каждого помещения. К этому устройству подсоединяются все электроустановки. Вместо внутреннего контура может быть установлен щиток заземления.
  3. Заземляющие проводники. Соединительные линии, предназначенные для подключения электроустановок непосредственно к заземлителю, или внутреннему контуру заземления.

Рассмотри эти компоненты подробнее.

Внешний, или наружный контур

Монтаж контура заземления зависит от внешних условий. Прежде чем начать расчет, и выполнить проектный чертеж, необходимо знать параметры грунта, в котором будут установлены заземлители. Если вы сами строили дом, эти характеристики известны. В противном случае лучше вызвать геодезистов, для получения заключения по грунту.

Какие бывают грунты, и как они влияют на качество заземления? Примерное удельное сопротивление каждого типа грунта. Чем оно ниже, тем лучше проводимость.

  • Глина пластичная, торф = 20–30 Ωм·м
  • Суглинок пластичный, зольные грунты, пепел, классическая садовая земля = 30–40 Ом·м
  • Чернозем, глинистые сланцы, полутвердая глина = 50–60 Ом·м

Это лучшая среда для того, чтобы установить наружный контур заземления. Сопротивление растекания тока будет достаточно низким даже при малом содержании влаги. А в этих грунтах естественная влажность обычно выше среднего.

Полутвердый суглинок, смесь глины и песка, влажная супесь — 100–150 Ом·м

Сопротивление немного выше, но при нормальной влажности параметры заземления не выйдут за нормативы. Если в регионе установки установится продолжительная сухая погода, необходимо принимать меры к принудительному увлажнению мест установки заземлителей.

Глинистый гравий, супесок, влажный (постоянно) песок = 300–500 Ом·м

Гравий, скала, сухой песок – даже при высокой общей влажности, заземление в такой почве будет неэффективным. Для соблюдения нормативов, придется устанавливать глубинные заземлители.

Многие владельцы объектов, экономя «на спичках», просто не понимают, для чего нужен контур заземления. Его задача при соединении фазы с землей обеспечить максимальную величину тока короткого замыкания. Только в этом случае быстро сработают устройства защитного отключения. Этого невозможно достичь, если сопротивление растекания тока будет высоким.

Определившись с грунтом, вы сможете выбрать тип, и самое главное — размер заземлителей. Предварительный расчет параметров можно выполнить по формуле:

Расчет приведен для вертикально установленных заземлителей.

Расшифровка величин формулы:

  • R0 — полученное после вычисления сопротивление одного заземлителя (электрода) в омах.
  • Рэкв — удельное сопротивление грунта, см. информацию выше.
  • L — общая длина каждого электрода в контуре.
  • d — диаметр электрода (если сечение круглое).
  • Т — вычисленное расстояние от центра электрода до поверхности земли.

Задавая известные данные, а также меняя соотношение величин, вы должны добиться значения для одного электрода порядка 30 Ом.

Если установка вертикальных заземлителей невозможна (по причине качества грунта), можно рассчитать величину сопротивления горизонтальных заземлителей.

Поэтому лучше потратить больше времени на забивание вертикальных стержней, чем следить за барометром и влажностью воздуха.

И все же приводим формулу расчета горизонтальных заземлителей.

Соответственно, расшифровка дополнительных величин:

  • Rв — полученное после вычисления сопротивление одного заземлителя (электрода) в омах.
  • b — ширина электрода — заземлителя.
  • ψ — коэффициент, зависящий от погодного сезона. Данные можно взять в таблице:

ɳГ — так называемый коэффициент спроса горизонтально расположенных электродов. Не вдаваясь в подробности, получаем цифры из таблицы на иллюстрации:

Предварительный расчет сопротивления необходим не только для правильного планирования закупок материала: хотя будет обидно, если вам не хватит для завершения работ, пары метров электрода, а до магазина несколько десятков километров. Более-менее аккуратно оформленный план, расчеты и чертежи, пригодятся для решения бюрократических вопросов: при подписании документов о приемке объекта, или составлении ТУ с компанией энергосбыта.

Разумеется, никакой инженер не подпишет бумаги только на основании пусть и красиво исполненных чертежей. Будут произведены замеры сопротивления растекания.

Переносное заземление до 1000 вольт

Для таких типов заземлений предусматриваются заземлители с проводниками, сечение которых составляет 16 кв.мм. К ним относятся данные марки:

  1. ПЗРУ-1, предназначен для защиты рабочих, которые трудятся на токоведущих частях электрических установок с напряжением от 0,4 – 1 кВ. Используется твердый дюралюминий марки Д16. Клеммы хорошо соприкасаются с проводами и имеют простую конструкцию, могут быть наложены и на наклонные провода. В этом случае проводники обладают высокой гибкостью, медные, многожильные, изоляция прозрачная из ПВХ. Также устройство имеет стальную пружину, которая расположена между проводом и клеммами, тем самым исключает повреждение. У конструкции есть специально подобранная штанга, которая соответствует размеру.
  2. ЗПЛ-1 – заземление переносное для воздушных линий до 1 кВ. Сечение проводников в данном типе могут быть от 35-95 кв.мм, в однофазном или трехфазном исполнении. Также данное устройство комплектуется штангой, которая покрывается порошковой краской и трубкой, зачищающей от термического воздействия.
  3. ЗПП-1 – для распределительных устройств. Данная конструкция имеет трехфазный тип с тремя штангами, сечение кабеля варьируется от 25-95 кв.мм. Клеммы выполняются из алюминия, прикрепляются к проводу с помощью гильз из меди.

Заземление

Что такое переносное заземление и его назначение

С его помощью удается защитить конструктивные элементы не функционирующих электроустановок от случайного попадания на них опасного потенциала и исключить появление наведенного напряжения (при отсутствии штатных заземлителей ножевого типа).

Для углубленного понимания назначения переносных заземлений, прежде всего, потребуется разобраться с технологией происходящих процессов и принципом их действия. Они состоят в следующем:

  • При ошибочной подаче или наведении за счет индукционных полей постороннего напряжения на участке с работающими на нем людьми, при наличии заземления опасный ток стекает непосредственно в землю.
  • Одновременно с этим его величина в рабочих цепях резко возрастает.
  • Последнее вызывает срабатывание автоматов или защитных предохранителей и последующее за этим снятие случайно поданного напряжения с токоведущих частей.

Установка и функционирование переносного защитного заземления полностью идентично стационарным устройствам, с тем лишь отличием, что этот вариант является временной мерой защиты от воздействия опасного напряжения.

Алгоритм установки

Заземление проводится со стороны токоведущих жил, откуда подается напряжение. Между точкой подключения и местом, куда нужно провести землю, не должно находиться преобразующих элементов с гальванической развязкой, к которым относятся умножители напряжения, стабилизаторы и трансформаторы.

Оператор, который производит настройку и установку временного оборудования, обязательно должен быть в защитной спецодежде. Это прозрачная маска на лицо, рукавицы, изолирующие ботинки, диэлектрический коврик для ног. Работать без защиты запрещено.

Все работы осуществляются в строго приведенной последовательности:

  1. Крепление общего или центрального зажима на заземляющую шину. Она должна быть действующей и проверенной.
  2. С помощью тестера или индикаторной отвертки проверяется отсутствие напряжения на токоведущей жиле.

Работы должны проводиться как минимум двумя специалистами. Это позволяет в случае поражения электрическим током перекрыть подачу электроэнергии, оказать первую помощь пострадавшему и вызвать врача. Заниматься монтажом и подключением должны только профессионалы с высокой квалификацией и достаточным опытом работы.

Если работы выполняются на незаземленной (штатно) электроустановке, необходимо создать временный контур заземления. Для этого организуется тот самый треугольник, в соответствии с правилами организации защитного заземлителя. К нему присоединяется переносное заземление.

Заземлитель организуется с помощью металлических штырей, профилей (они забиваются с помощью кувалды), или буравчиков. У подобных устройств должно быть приспособление для извлечения их из грунта после окончания работ.

Еще один вариант для простой установки — заземлитель с обратным молотком. С его помощью можно легко погрузить стержень в грунт и извлечь его обратно.

Установка переносного заземления на временный контур производится по тем же правилам, что и на стационарную шину защитного заземления.

Защита станков и электрооборудования в цехах

В соответствие с действующими правилами ПУЭ различные виды заземлений в электроустановках до 1000 Вольт отличают по принадлежности их к той или иной системе. А по типу заземляемых устройств различают следующие варианты:

  • Защита типового станочного оборудования.
  • Заземление электродвигателей и сварочных аппаратов.
  • Защита передвижных установок и эксплуатируемых электроприборов.

В этом разделе рассматривается первый пункт из перечня, касающийся станков и другого оборудования, устанавливаемого в заводских цехах.

Хорошо известно, что при работе на станочном оборудовании риск случайного попадания фазы на корпус достаточно велик. Чтобы правильно заземлить станок в цеху – потребуется разобраться со следующими моментами:

  1. Где проложен заземляющий контур в рабочей зоне.
  2. Какой толщины должна выбираться шина, применяемая для соединения корпуса станка с защитным контуром.
  3. В каком месте накладывается стационарное заземление.
  4. Какие заграждающие приспособления допускается использовать для ограничения доступа к опасным частям оборудования.

Рассмотрением всех этих вопросов должен заниматься цеховой электрик, который знаком с расположением элементов заземляющего хозяйства и полностью владеет информацией по порядку подсоединения корпуса станка к ЗУ. Он должен знать, в частности, что для заземления электрооборудования в его конструкции предусмотрена специальная точка, к которой подсоединяется заземляющая шина.