Индуктивные датчики приближения

Оглавление

Преимущества индуктивных датчиков перемещения LVDT

1. Преимущества над линейными потенциометрами (POTS).

  • Не имеют контакта корпуса и внутренних деталей с чувствительным элементом, что означает, что нет никакого износа при движении штока. POTS датчики имеют контакт с чувствительным элементом и могут быстро изнашиваются, особенно под воздействием вибрации.
  • Можно легко обеспечить защиту от влаги и пыли на требуемом уровне, даже стандартные версии LVDT датчиков обычно имеют гораздо лучший уровень защиты от внешний воздействий, чем POTS.
  • Вибрация не вызывает влияния на пропадание сигнала, в отличие от POTS, где скользящий бегунок может прервать контакт с проводником при вибрации.

2. Преимущества над магнитострикционными датчиками.

  • Не восприимчивы к ударам и вибрации.
  • Менее восприимчивы к паразитным магнитным полям окружающей среды.
  • Система формирования сигнала может быть удалена от чувствительного элемента на некоторое расстояние, что позволяет использовать датчики при работе с высокой температурой и высоким уровнем радиации.
  • Магнитострикционные датчики не имеют короткого штока ±100мм или менее, а это как раз наиболее востребованный диапазон технического применения датчиков перемещения.

3. Преимущества над кодерами (датчиками положения).

  • Имеют лучший аналоговый частотный отклик.
  • Имеют более прочный корпус.
  • Сразу после включения «знают» положение штока, в отличии от кодеров, которым надо указывать постоянную ссылку на известное положение.

4. Преимущества над переменными векторными резистивными преобразователями (VRVT)

  • LVDT датчики как правило более дешевы.
  • Имеют меньший диаметр корпуса.
  • Более прочные и не изнашиваются.
  • Могут использоваться значительно дольше.

5. Преимущества над линейными емкостными датчиками

  • LVDT датчики как правило более дешевы.
  • Менее восприимчивы к внешним условиям эксплуатации.
  • Значительно более прочные.

Принцип действия бесконтактных датчиков

Принцип действия бесконтактных выключателей (датчиков) основан на изменении амплитуды колебаний генератора при внесении в чувствительную зону датчика конкретного материала определенных размеров. Расстояние переключения устройства задается в зависимости от потребностей процесса и разновидности датчика. Бесконтактный способ распознавания объекта воздействия позволяет существенно повысить надежность работы устройства по причине отсутствия движущихся и трущихся деталей.

Перечень функциональных возможностей бесконтактных датчиков широк. Обнаружение положения объекта, подсчет, позиционирование и сортировка предметов на конвейерах, контроль перемещения и скорости, обнаружение поломок механизмов, определение угла поворота, измерение перекоса и еще много других функций заложено в понятие «датчик приближения», как еще называют бесконтактный выключатель.

Именно потому их используют в самых разных отраслях: от металлообработки до пищевого производства, как элемент автоматизации транспорта и для контроля в станкостроении, для управления водо- газо, нефтеснабжением и на морских нефтеперерабатывающих платформах. Чтобы подобрать подходящий переключатель, стоит ознакомиться с классификацией датчиков по принципу их действия.

Индуктивные бесконтактные выключатели

Индуктивные датчики реагируют на металлические, магнитные, ферромагнитные или аморфные материалы нужных размеров. Эффект достигается за счет изменения амплитуды колебаний генератора при попадании объекта в чувствительную зону датчика.

Подберите индуктивный выключатель:

по параметрам по аналогам по отраслям по маркировке

Емкостные бесконтактные выключатели

Емкостные выключатели обнаруживают как металлические, так и диэлектрические объекты. Принцип действия выключателя основан на изменении емкости конденсатора, выполняющего роль чувствительного элемента, при внесении в чувствительную зону объектов.

Подберите емкостный выключатель:

по параметрам по аналогам по отраслям по маркировке

Оптические бесконтактные выключатели

Оптические бесконтактные датчики обнаруживают контролируемые объекты, отражающие или прерывающие оптическое излучение. Коммутационный элемент у оптических бесконтактных датчиков полупроводниковый или релейный. Дальность действия этих датчиков может достигать значения 150 метров.

Подберите оптический выключатель:

по параметрам по аналогам по отраслям по маркировке

Магниточувствительные бесконтактные выключатели

Магниточувствительные датчики служат для обнаружения в пространстве намагниченного объекта. Срабатывание датчика происходит при изменении напряженности магнитного поля, вызванного, например, перемещением постоянного магнита, расположенного на подвижной части механизма.

Подберите магниточувствительный выключатель:

по параметрам по аналогам по отраслям по маркировке

Бесконтактные датчики могут быть исполнены в особо прочных корпусах из специальных материалов, согласно стандарту NAMUR, а также с приемкой 5.

Достоинства бесконтактных датчиков (выключателей):

  • частота срабатывания: до 3 кГц, на эффекте Холла до 15 кГц;
  • высокая надежность;
  • однозначная зависимость выходной величины от входной;
  • стабильность характеристик во времени;
  • небольшие размеры и масса;
  • отсутствие обратного воздействия на объект;
  • повышенная герметичность IP 68
  • различные варианты монтажа
  • работа при различных условиях эксплуатации: в общепромышленных условиях
  • в широких температурных диапазонах (от -60C° до +150C°)
  • при высоком давлении (до 500 Атм)
  • в агрессивных средах
  • во взрывоопасных зонах

Расстояние срабатывания и объект воздействия

В зависимости от конструкции и принципа действия индуктивного датчика объект воздействия может иметь вертикальное или горизонтальное перемещение относительно самого измерителя. Однако реакция сенсора на начало движения контролируемого объекта может начинаться не сразу, что обуславливается номинальным расстоянием, при котором обеспечивается зона чувствительности датчика и техническими параметрами объекта.

Рис. 4. Область и объект срабатывания

Как видите на рисунке 4, в первом положении контролируемый объект находится на таком удалении, где электромагнитные линии не достигают его поверхности. В таком случае с индуктивного датчика сигнал сниматься не будет, так как он не фиксирует перемещения в зоне чувствительности. Во втором положении контролируемый объект уже пересек расстояние срабатывания и вошел в чувствительную зону. В результате взаимодействия с объектом на выходе датчика появится соответствующий сигнал.

Также расстояние срабатывания будет зависеть от геометрических размеров, формы и материала. Следует заметить, что в качестве объекта срабатывания индуктивного датчика применяются только металлические предметы, но от конкретного типа будет отличаться и момент перехода датчика в противоположное состояние, что изображено на диаграмме:

Рис. 5. Зависимость расстояния срабатывания от материала

Маркировка при подключении

На принципиальных схемах индуктивные датчики принято обозначать в виде ромба или квадрата с двумя вертикальными линиями внутри. Нередко в них также указывается тип выхода (нормально открытый или закрытый), соответствующий одной из разновидностей полупроводниковых транзисторов. В большинстве вариантов схем указывается нормально закрытая группа или оба типа в одном корпусе.

Цветовая маркировка выводов


Перед установкой датчика необходимо сверить данные с инструкцией На практике применяется стандартная система маркировки выводов датчиков индуктивности, которой придерживаются все без исключения производители чувствительных приборов. Тем не менее, перед их монтажом рекомендуется внимательно следить за полярностью подключения и обязательно сверяться с прилагаемой к изделиям инструкцией.

На корпусах всех датчиков имеется рисунок с цветной маркировкой проводов, если это позволяют его размеры.

Стандартный порядок обозначения:

  • синий (Blue) всегда означает минусовую шину питания;
  • коричневым цветом (Brown) обозначается плюсовой проводник;
  • черный (Black) соответствует выходу датчика;
  • белый (White) – это дополнительный выход или вход.

Для уточнения последнего маркировочного обозначения его следует сверить с данными инструкции, прилагаемой к конкретному прибору.

Характеристики индуктивных датчиков

Чем отличаются датчики.

Конструкция, вид корпуса

Тут два основных варианта – цилиндрический и прямоугольный. Другие корпуса применяются крайне редко. Материал корпуса – металл (различные сплавы) или пластик.

Расстояние переключения (рабочий зазор)

Это то расстояние до металлической пластины, на котором гарантируется надёжное срабатывание датчика. Для миниатюрных датчиков это расстояние – от 0 до 2 мм, для датчиков диаметром 12 и 18 мм – до 4 и 8 мм, для крупногабаритных датчиков – до 20…30 мм.

Количество проводов для подключения

Подбираемся к схемотехнике.

2-проводные. Датчик включается непосредственно в цепь нагрузки (например, катушка пускателя). Так же, как мы включаем дома свет. Удобны при монтаже, но капризны к нагрузке. Плохо работают и при большом, и при маленьком сопротивлении нагрузки.

2-проводный датчик. Схема включения

Нагрузку можно подключать в любой провод, для постоянного напряжения важно соблюдать полярность. Для датчиков, рассчитанных на работу с переменным напряжением – не играет роли ни подключение нагрузки, ни полярность

Можно вообще не думать, как их подключать. Главное – обеспечить ток.

3-проводные. Наиболее распространены. Есть два провода для питания, и один – для нагрузки. Подробнее расскажу отдельно.

4- и 5-проводные. Такое возможно, если используется два выхода на нагрузку (например, PNP и NPN (транзисторные), или переключающие (реле). Пятый провод – выбор режима работы или состояния выхода.

Виды выходов датчиков по полярности

У всех дискретных датчиков может быть только 3 вида выходов в зависимости от ключевого (выходного) элемента:

Релейный. Тут всё понятно. Реле коммутирует необходимое напряжение либо один из проводов питания. При этом обеспечивается полная гальваническая развязка от схемы питания датчика, что является основным достоинством такой схемы. То есть, независимо от напряжения питания датчика, можно включать/выключать нагрузку с любым напряжением. Используется в основном в крупногабаритных датчиках.

Транзисторный PNP. Это – PNP датчик. На выходе – транзистор PNP, то есть коммутируется “плюсовой” провод. К “минусу” нагрузка подключена постоянно.

Транзисторный NPN. На выходе – транзистор NPN, то есть коммутируется “минусовой”, или нулевой провод. К “плюсу” нагрузка подключена постоянно.

Можно чётко усвоить разницу, понимая принцип действия и схемы включения транзисторов. Поможет такое правило: Куда подключен эмиттер, тот провод и коммутируется. Другой провод подключен к нагрузке постоянно.

Ниже будут даны схемы включения датчиков, на которых будет хорошо видно эти отличия.

Виды датчиков по состоянию выхода (НЗ и НО)

Какой бы ни был датчик, один из основных его параметров – электрическое состояние выхода в тот момент, когда датчик не активирован (на него не производится какое-либо воздействие).

Выход в этот момент может быть включен (на нагрузку подается питание) либо выключен. Соответственно, говорят – нормально закрытый (нормально замкнутый, НЗ) контакт либо нормально открытый (НО) контакт. В иностранной аппаратуре, соответственно – NС и NО.

То есть, главное, что надо знать про транзисторные выходы датчиков – то, что их может быть 4 разновидности, в зависимости от полярности выходного транзистора и от исходного состояния выхода:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

Контакты датчиков также могут быть с задержкой включения или выключения. Про такие контакты также сказано в статье про приставки выдержки времени ПВЛ. А почему датчики, отвечающие за безопасность, должны быть обязательно с НЗ контактами – см. статью про Цепи безопасности в промышленном оборудовании.

Положительная и отрицательная логика работы

Это понятие относится скорее к исполнительным устройствам, которые подключаются к датчикам (контроллеры, реле).

ОТРИЦАТЕЛЬНАЯ или ПОЛОЖИТЕЛЬНАЯ логика относится к уровню напряжения, который активизирует вход.

ОТРИЦАТЕЛЬНАЯ логика: вход контроллера активизируется (логическая “1”) при подключении к ЗЕМЛЕ. Клемму S/S контроллера (общий провод для дискретных входов) при этом необходимо соединить с +24 В=. Отрицательная логика используется для датчиков типа NPN.

ПОЛОЖИТЕЛЬНАЯ логика: вход активизируется при подключении к +24 В=. Клемму контроллера S/S необходимо соединить с ЗЕМЛЕЙ. Используйте положительную логику для датчиков типа PNP. Положительная логика применяется чаще всего.

Продолжение статьи – здесь >>>. Во второй части даны реальные схемы и рассмотрено практическое применение различных типов датчиков с транзисторным выходом.

Погрешности

Погрешности в процессе преобразования диагностических значений оказывают влияние на способности индукционных датчиков выдавать достоверную информацию. К основным из них можно отнести следующие.

Электромагнитная

Данную погрешность принято учитывать только в качестве случайной величины. Как правило, она возникает в ходе индуцирования ЭДС в индукционной катушке в результате внешнего воздействия сторонними магнитными полями. Это происходит в процессе производства из-за силовых электроустройств. Они образуют магнитные поля, что впоследствии и формирует электромагнитную погрешность.

От температуры

Эта погрешность тоже выступает в качестве случайного значения, поскольку работа большого числа элементов индукционного датчика напрямую зависит от температурных показателей, поэтому это ключевая величина, которая даже учитывается в процессе проектировки подобного оборудования.

Магнитной упругости

Обычно такая погрешность может проявляться как следствие нестабильности деформации магнитопровода устройства в процессе сборки самого датчика, а также при деформационных изменениях во время работы. Кроме того, оказываемое нестабильным электронапряжением воздействие на магнитопровод оборудования вызывает снижение качества передаваемого сигнала на выходе.

Деформация элементов

Данная погрешность, как правило, проявляется в результате воздействия измеряющей силы на значение деформации частей индукционного датчика, а также под влиянием усилий, оказываемых на нестабильные деформирующие процессы. Кроме того, не меньшее влияние на нее могут оказывать люфты и зазоры, образовавшиеся в подвижных элементах конструкции устройства.

Кабеля

Такая погрешность обычно проявляется от непостоянного значения сопротивления, в случае деформации самого провода и под влиянием температуры. Также подобным образом может сказаться наводка внешними полями ЭДС в кабеле.

Старение

Данная погрешность может проявляться при износе движущихся элементов самого устройства, а также в случае постоянно изменяющихся магнитных свойств используемого магнитопровода. Ее принято считать, строго говоря, случайным значением. В процессе определения данной погрешности учитывают кинематику конструкции индукционного датчика, а во время проектирования подобного оборудования максимальный эксплуатационный срок рекомендуется определять только при работе в обычном режиме, чтобы при этом износ не успел превысить установленного значения.

Технологии

Погрешности технологии проявляются в случае отклонений от технического процесса производства, при явном разбросе технических параметров катушек и остальных элементов во время сборки, влиянии допущенных зазоров при соединении устройства. Для ее измерения принято использовать механическое измерительное оборудование.

Как работает индуктивный датчик

Как говорится, лучше один раз увидеть, чем  сто раз услышать, поэтому проведем небольшой опыт с индуктивным датчиком.

Итак, у нас в гостях индуктивный датчик российского производства

Читаем, что на нем написано

Марка датчика ВБИ бла бла бла бла, S – расстояние срабатывания, здесь оно составляет 2 мм, У1 – исполнение для умеренного климата, IP – 67 – уровень защиты (короче уровень защиты здесь очень крутой), Ub – напряжение,  при котором работает датчик, здесь напряжение может быть в диапазоне от 10 и до 30 Вольт, Iнагр – ток нагрузки, этот датчик может выдать в   нагрузку силу тока до 200 миллиампер, думаю, это прилично.

На развороте бирки схема подключения этого датчика.

Ну что, проверим работу датчика? Для этого цепляем нагрузку. Нагрузкой у нас будет светодиод, соединенный последовательно с резистором с номиналом в 1 кОм. Зачем нам резистор?  Светодиод в момент включения начинает бешено жрать ток и сгорает. Для того чтобы это предотвратить, в цепь ставится последовательно со светодиодом резистор.

На коричневый провод датчика  подаем плюс от Блок питания, а на синий  – минус. Напряжение я взял  15 Вольт.

Наступает момент истины… Подносим  к рабочей зоне датчика металлический предмет, и датчик у нас тут же срабатывает, о чем говорит нам светодиод, встроенный в датчик, а также наш подопытный светодиод.

На другие материалы, кроме металлов, датчик не реагирует. Баночка канифоли для него ничего не значит :-).

Вместо светодиода может использоваться вход логической схемы, то есть датчик при срабатывании выдает сигнал логической единицы, которая может использоваться в цифровых устройствах.

Назначение

Индуктивный датчик предназначен для контроля перемещения рабочего органа без непосредственного контакта с ним. Основной сферой применения для него является станочное оборудование, точные медицинские приборы, системы автоматизации технологических процессов, измерения и контроля формы изделия. В соответствии с положениями п.2.1.1.1 ГОСТ Р 50030.5.2-99 это датчик, который создает электромагнитное поле в области чувствительности и обладает полупроводниковым коммутатором.

Сфера применения индуктивных датчиков во многом определяется их высокой надежностью и устойчивостью к воздействию внешних факторов. На их показания и работу не влияют многие факторы окружающей среды: влага, оседание конденсата, скопление пыли и грязи, попадание твердых частиц. Такие особенности обеспечиваются их устройством и конструктивными данными.

Обзор емкостных датчиков CR

CR – серия емкостных цилиндрических датчиков от Autonics (рисунок 9).

Выпускаются датчики двух типоразмеров – CR18 и CR30 с зонами чувствительности 8 и 15 мм соответственно.

Двухпроводные нормально разомкнутые версии CRxx-xAO и двухпроводные нормально замкнутые версии CRxx-xAС работают с переменным выходным напряжением 110…240 В и током 5…200 мА. Частота срабатывания – 20 Гц.

Трехпроводные версии предназначены для работы в цепях постоянного напряжения 10…30 В с выходными токами до 200 мА. Их частота срабатывания достигает 50 Гц (таблица 8).

Таблица 8. Основные характеристики трехпроводных датчиков семейства CR

Параметр Наименование
CR18-8DN, CR18-8DP, CR18-8DN2 CR30-15DN, CR30-15DP, CR30-15DN2 CR18-8AO, CR18-8AC CR30-15AO, CR30-15AC
Зона чувствительности, мм 8 15 8 15
Гистерезис Макс. 20% от расстояния срабатывания
Стандартный объект для обнаружения (железо), мм 50x50x1
Рабочий зазор, мм 0…5,6 0…10,5 0…5,6 0…10,5
Напряжение питания ном., В 12/24 100/240
Предельное напряжение питания, В 0…30 85…264
Ток потребления, мА Макс. 15 Макс. 2,2
Частота срабатывания *, Гц 50 20
Температурный дрейф Макс. ±10% от расстояния срабатывания при температуре окружающей среды 20°С
Номинальный ток, мА Макс. 200
Сопротивление изоляции Мин. 50 МОм (500 В=)
Электрическая прочность диэлектрика ~1500 В, 50/60 Гц в течение 1 минуты
Стойкость к вибрациям амплитуда 1 мм при частоте 10…55 Гц по каждому из направлений X, Y, Z в течение 2 часов
Стойкость к ударным нагрузкам 500 м/с2 (примерно 50g) направления X, Y, Z 3 раза
Индикатор Индикатор работы (красный светодиод)
Рабочая температура, °C -25…70
Температура хранения, °C -30…80
Влажность, % 35…95
Встроенная защита от перенапряжения, обратной полярности от перенапряжения
Степень защиты (IP) IP66 IP65 IP66 IP65
Масса, г 76 206 70 200

* – Частота срабатывания представляет собой среднее значение: стандартный объект с удвоенной шириной на расстоянии 1/2 от номинального. Состояние датчика можно определить по светодиоду. Если он светится – ток поступает в нагрузку.

Код для заказа датчиков серии CR включает 5 позиций: тип датчика, форму, диаметр головки, код зоны чувствительности, код типа выходного каскада (таблица 9).

Таблица 9. Именование датчиков семейства CR

C R 30 -15 DN
Тип датчика Форма корпуса Диаметр головки датчика, мм Зона чувствительности, мм Тип выхода
С – емкостной R – цилиндр 18 8 DN 3-проводной, NPN, нормально разомкнутый, питание 24 В DC
30 15 DN2 3-проводной, NPN, нормально замкнутый, питание 24 В DC
DP 3-проводной, PNP, нормально разомкнутый, питание 24 В DC
DP2 3-проводной, NPN, нормально замкнутый, питание 24 В DC
AO 2-проводной, нормально разомкнутый, питание 110…240 В AC
2-проводной, нормально замкнутый, питание 110…240 В AC

Стоит отметить и высокую степень защиты: IP66 – для CR18, IP66 – для CR30. Изоляционные свойства также на высоте. Так как емкостные датчики способны обнаруживать не только металлические объекты, то спектр приложений серии CR еще шире, чем у индуктивных датчиков. Сфера их применения:

  • концевые выключатели станков;
  • детекторы автоматических линий розлива молока, пива, и тому подобное;
  • датчики уровня жидкости;
  • детекторы обнаружения брака в текстильном производстве.

Как проверить индукционный датчик на исправность

Установка индуктора коленчатого вала

Способов проверки существует довольно много, все зависит от навыков автомобилиста и наличия необходимых приборов.

  • Наиболее примитивным способом проверки исправности индуктивного датчика является его визуальный осмотр. В процессе осмотра определяется наличие механических повреждений и нарушение изоляции и целостности проводов.
  • Второй не менее простой способ заключается в банальной замене тестируемого датчика. Но скажем сразу – способ не лучший и, мало того, что он требует наличия нескольких резервных датчиков, он еще и крайне неточен.
  • Если под рукой имеется тестер, то можно проверить датчик и с большой вероятностью сказать, неисправен ли он. Для этого необходимо достать индукционный датчик из посадочного гнезда, соблюдая полярность, подключить к питающим клеммам напряжение от аккумулятора автомобиля. Если длины штатных проводов достаточно, то можно использовать их и не отключать датчик от бортовой сети. Затем отключается сигнальный провод (он обычно имеет маркировку «В») и между ним и корпусом автомобиля подключается вольтметр. Далее, к датчику необходимо несколько раз поднести и убрать металлический предмет, при этом показания вольтметра должны замеряться. Если показания вольтметра не изменились, то датчик необходимо заменить на исправный.

Осциллограф

Более сложный способ проверки индукционного датчика при помощи измерительных приборов потребует от автолюбителя хорошего навыка обращения с осциллографом. Для того чтобы определить исправен датчик или нет, необходимо снять его характеристики в процессе работы и сравнить с эталонными. Образцовые характеристики можно найти на сайте производителя датчика. Для съема характеристик осциллограф подключается как и вольтметр, только датчик остается на штатном месте. Потом двигатель автомобиля заводится, и на экране осциллографа появляется искомая характеристика. Если эталонная и измеренная характеристики значительно не совпадают, то датчик необходимо заменить.

Использование 4х измерительных головок позволяет проводить измерение сразу на 4х катушках зажигания и тем самым анализировать сигналы сразу от всех цилиндров двигателя. Так как импульсы зажигания в разных цилиндрах никогда не происходят в один момент, это позволяет суммировать сигналы от всех измерительных головок и получить на выходе один сигнал с серией последовательных импульсов, характеризующих систему зажигания в целом.

Длина сигнальных кабелей выбрана таким образом, чтобы было комфортно работать как с рядными двигателями, так и V-образными, и оппозитными.

В качестве шнура используется мягкий микрофонный кабель с плотной экранирующей оплеткой. Разъем для подключения датчика к осциллографу — BNC.

Корпус датчика изготовлен из полиуретана и надежно защищает чувствительный элемент датчика от возможных механических повреждений.

При разработке датчика особое внимание было уделено местам соединения сигнальных кабелей, как наиболее подверженное повреждениям. Внутри каждого соединения используется печатная плата, на которой располагаются электронные компоненты датчика, а сама плата несет силовую нагрузку, а также надежно крепит кабель

Данные монолитные соединения предотвращают обрыв кабеля при случайном рывке, а также значительно продлевает срок его службы.

Датчик разрабатывался для использования совместно с мотор-тестером MT Pro, но также может применяться и с любым другим осциллографом, подключается к любому аналоговому каналу.

Устройство и схема

Индукционный датчик, как и любое электронное устройство, состоит из связанных друг с другом узлов, обеспечивающих бесперебойность его работы. В качестве основных элементов аппарата можно выделить следующее.

Генератор

Ключевой задачей генератора является создание магнитного поля, на основе которого, в частности, строится принцип действия индукционного датчика, а также образуются зоны активности с объектом.

Триггер Шмидта

Триггер Шмидта представляет собой отдельный элемент, основным назначением которого считается обеспечение гистерезиса в процессе переключения устройства.

Усилитель

Усилительное устройство используется в качестве элемента, способного повышать значение амплитуды импульса, что позволяет сигналу быстрее достигать необходимого параметра.

Специальный индикатор

Диодный индикатор, свидетельствующий о фактическом состоянии контроллера. Кроме того, светодиод используется для обеспечения достаточного контроля функционирования индукционного датчика, а также, чтобы обеспечить достаточную оперативность в процессе настройки.

Компаунд

Компаунд предназначается для защиты устройства, поскольку может предотвратить попадание жидкости, в частности воды, внутрь корпуса индукционного датчика, а также снижает риск загрязнения оборудования, так как пыль может спровоцировать его поломку.

Схемы подключения датчиков PNP и NPN

Отличие PNP и NPN датчиков в том, что они коммутируют разные полюсы источника питания. PNP (от слова “Positive”) коммутирует положительный выход источника питания, NPN – отрицательный.

Ниже для примера даны схемы подключения датчиков с транзисторным выходом. Нагрузка – как правило, это вход контроллера.

PNP выход датчика. Нагрузка (Load) постоянно подключена к “минусу” (0V), подача дискретной “1” (+V) коммутируется транзистором. НО или НЗ датчик – зависит от схемы управления (Main circuit)

NPN выход датчика. Нагрузка (Load) постоянно подключена к “плюсу” (+V). Здесь активный уровень (дискретный “1”) на выходе датчика – низкий (0V), при этом на нагрузку подается питание через открывшийся транзистор.

Призываю всех не путаться, работа этих схем будет подробно расписана далее.

На схемах ниже показано в принципе то же самое. Акцент уделён на отличия в схемах PNP и NPN выходов.

Схемы подключения NPN и PNP выходов датчиков

На левом рисунке – датчик с выходным транзистором NPN. Коммутируется общий провод, который в данном случае – отрицательный провод источника питания.

Справа – случай с транзистором PNP на выходе. Этот случай – наиболее частый, так как в современной электронике принято отрицательный провод источника питания делать общим, а входы контроллеров и других регистрирующих устройств активировать положительным потенциалом.

Подключение индуктивного датчика

Не подскажите как подключить датчики к плате? Как я понимаю. поскольку они PNP придется добавить еще оптопары или реле для перехода от PNP к NPN ?

Заранее благодарен.

seaw688 Новичок   Сообщения: 5Зарегистрирован: 02 апр 2016, 11:44 Репутация: Настоящее имя: Владислав

Виды

На практике существует огромное разнообразие индуктивных датчиков, всех их можно разделить на две большие категории, в зависимости от рода питающего тока – переменного и постоянного. В зависимости от состояния контактов в соответствии с таблицей 1 р.3 ГОСТ Р 50030.5.2-99 индуктивные датчики бывают:

  • замыкающий – при перемещении контролируемого объекта происходит перевод во включенное положение;
  • размыкающий – в случае воздействия индуктивный датчик переводит контакты в отключенное положение;
  • переключающий – одновременно объединяет оба предыдущих варианта, за одну коммутацию переводит один вывод во включенное, второй, в отключенное положение.

По количеству измерительных цепей индуктивные датчики подразделяются на одинарные и дифференциальные. Первый из них обладает одной катушкой и одной цепью измерения. Второй тип подразумевает наличие двух сенсоров, измерительные цепи которых включаются в противофазу для сравнения показаний.

Рис. 6. Одинарый и дифференциальный датчик

По способу передачи данных индуктивные датчики подразделяются на аналоговые, электронные и цифровые. В первом случае применяются те же катушки и ферромагнитные сердечники. Электронные используют триггер Шмидта вместо ферромагнетиков для получения гистерезисной составляющей. Цифровые выполняются в формате печатных плат на микросхемах. Помимо этого виды подразделяются по количеству выводов датчика: два, три, четыре или пять.

Индуктивные датчики приближения

Индуктивные датчики приближения обнаруживают металлические предметы, их дальность зависит от типа металла, из которого сделан объект. Эти датчики используют высокочастотное магнитное поле создаваемое катушкой, которая является частью резонансного контура. Проводящий объект в диапазоне силовых линий этого магнитного поля заставляет вихревой ток индуцироваться на поверхности, что создает противоположное магнитное поле, которое эффективно снижает индуктивность катушки резонансного контура в датчике.

Индуктивные датчики приближения работают двумя способами. В первом случае, когда объект приближается к датчику, величина индуцированных вихревых токов увеличивается, что увеличивает нагрузку на колебательный контур, вызывая потерю качества, тем самым гася колебания. Датчик обнаруживает это изменение с помощью детектора амплитуды и посылает выходной сигнал о том, что объект обнаружен.

Индуктивный датчик Texas Instruments LDC0851HDSGT является примером датчика приближения ближнего действия, который использует сдвиг частоты для обнаружения присутствия проводящего объекта в его электромагнитном поле.

Датчик LDC0851 отлично подходит для устройств бесконтактного обнаружения приближения объектов для подсчета событий, где требуемый диапазон обнаружения составляет менее 10 мм. Изменение начального состояния происходит когда проводящий объект движется в близости от чувствительной катушки. Дифференциальная конструкция с двумя катушками (датчик и эталон) позволяет определять относительную индуктивность, а гистерезис гарантирует надежное переключение не подверженное механическим колебаниям, колебаниям температуры или влажности. Обе сенсорные катушки настроены с помощью одного конденсатора, который устанавливает частоту колебаний от 3 до 19 МГц. Двухтактный выход находится в низком состоянии, когда результирующая индуктивность измерительной схемы ниже опорного порога, и в высоком состоянии, когда она выше.