Что такое несущая способность грунта

Оглавление

Пример расчета заземления

Сопротивление растекания тока одного вертикального заземлителя (стержня):

где – ρэкв – эквивалентное удельное сопротивление грунта, Ом·м; L – длина стержня, м; d – его диаметр, м; Т – расстояние от поверхности земли до середины стержня, м.

В случае установки заземляющего устройства в неоднородный грунт (двухслойный), эквивалентное удельное сопротивление грунта находится по формуле:

где – Ψ – сезонный климатический коэффициент (таблица 2); ρ1, ρ2 – удельное сопротивления верхнего и нижнего слоя грунта соответственно, Ом·м (таблица 1); Н – толщина верхнего слоя грунта, м; t – заглубление вертикального заземлителя (глубина траншеи) t = 0.7 м.

Так как удельное сопротивление грунта зависит от его влажности, для стабильности сопротивления заземлителя и уменьшения на него влияния климатических условий, заземлитель размещают на глубине не менее 0.7 м.

Удельное сопротивление грунта Таблица 1

Торф 20
Почва (чернозем и др.) 50
Глина 60
Супесь 150
Песок при грунтовых водах до 5 м 500
Песок при грунтовых водах глубже 5 м 1000

Заглубление горизонтального заземлителя можно найти по формуле:

Монтаж и установку заземления необходимо производить таким образом, чтобы заземляющий стержень пронизывал верхний слой грунта полностью и частично нижний.

Значение сезонного климатического коэффициента сопротивления грунта Таблица 2

Тип заземляющих электродов Климатическая зона
I II III IV
Стержневой (вертикальный) 1.8 ÷ 2 1.5 ÷ 1.8 1.4 ÷ 1.6 1.2 ÷ 1.4
Полосовой (горизонтальный) 4.5 ÷ 7 3.5 ÷ 4.5 2 ÷ 2.5 1.5
Климатические признаки зон
Средняя многолетняя низшая температура (январь) от -20+15 от -14+10 от -10 до 0 от 0 до +5
Средняя многолетняя высшая температура (июль) от +16 до +18 от +18 до +22 от +22 до +24 от +24 до +26

Количество стержней заземления без учета сопротивления горизонтального заземления находится по формуле:

Rн – нормируемое сопротивление растеканию тока заземляющего устройства, определяется исходя из правил ПТЭЭП (Таблица 3).

Наибольшее допустимое значение сопротивления заземляющих устройств (ПТЭЭП) Таблица 3

Характеристика электроустановки Удельное сопротивление грунта ρ, Ом·м Сопротивление Заземляющего устройства, Ом
Искусственный заземлитель к которому присоединяется нейтрали генераторов и трансформаторов, а также повторные заземлители нулевого провода (в том числе во вводах помещения) в сетях с заземленной нейтралью на напряжение, В:
660/380 до 100 15
свыше 100 0.5·ρ
380/220 до 100 30
свыше 100 0.3·ρ
220/127 до 100 60
свыше 100 0.6·ρ

Как видно из таблицы нормируемое сопротивления для нашего случая должно быть не больше 30 Ом. Поэтому Rн принимается равным Rн = 30 Ом.

Сопротивление растекания тока для горизонтального заземлителя:

Lг, b – длина и ширина заземлителя; Ψ – коэффициент сезонности горизонтального заземлителя; ηг – коэффициент спроса горизонтальных заземлителей (таблица 4).

Длину самого горизонтального заземлителя найдем исходя из количества заземлителей:

– в ряд; – по контуру.

а – расстояние между заземляющими стержнями.

Определим сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей:

Полное количество вертикальных заземлителей определяется по формуле:

ηв – коэффициент спроса вертикальных заземлителей (таблица 4).

Коэффициент использования показывает как влияют друг на друга токи растекания с одиночных заземлителей при различном расположении последних. При соединении параллельно, токи растекания одиночных заземлителей оказывают взаимное влияние друг на друга, поэтому чем ближе расположены друг к другу заземляющие стержни тем общее сопротивление заземляющего контура больше.

Полученное при расчете число заземлителей округляется до ближайшего большего.

Расчет заземления по указанным выше формулам можно автоматизировать воспользовавшись для расчета специальной программой «Электрик v.6.6», скачать ее можно в интернете бесплатно.

Способы получения необходимых параметров

Заземлители традиционной конструкции состоят из набора вертикальных и горизонтальных электродов и монтируются в беспроблемных, «хороших» грунтах. Вертикальные электроды обладают множеством достоинств, т. к. с увеличением глубины:

  • характеристики почвы более стабильны;
  • сезонные колебания меньше дают о себе знать;
  • содержание влаги повышается и тоже снижает сопротивление.

Горизонтальные электроды применяются для нужд соединения, но могут использоваться и как самостоятельные элементы, когда невозможно нормально смонтировать вертикальные заземлители или требуется устройство определённой конструкции. В критических условиях вечной мерзлоты или тяжёлых грунтов монтаж классического заземления неэффективен. Специфическая ситуация местности потребует гигантских размеров заземляющих устройств, а в результате явления выталкивания электроды просуществуют в почве не более года.

Для решения этих проблем специалисты разработали ряд методик:

  • Нужные объёмы «плохих» грунтов изымаются и заменяются «хорошими»: углём или глиной. В случае вечной мерзлоты эффект от этого будет краткосрочным, т. к. грунт-заместитель тоже рано или поздно застывает.
  • В районах, имеющих низкое удельное сопротивление почв, монтируются установки выносного заземления на удалении до 2 км от основного источника.
  • Используются химические соединения — соли и электролиты. Хлористый натрий (обычная поваренная соль), хлористый кальций, сернокислая медь (медный купорос) уменьшают сопротивление промерзающего грунта, но требуют обновления через непродолжительное время (от 2 до 4 лет), т. к. подвержены вымыванию.

Лучшее решение проблемы — создание комплекса электролитического заземления. В нём выгодно сочетается химическая обработка почвы и замена грунта. Для этого используются электролитические электроды, которые наполняются подготовленной смесью минеральных солей и равномерно распределяются по рабочему пространству. Процесс выщелачивания реагентов становится более стабильным за счёт использования специального околоэлектродного заполнителя, увеличивающего площадь контакта с почвой. Это позволяет решать проблемы установки традиционных заземлителей, существенно уменьшает размеры и количество оборудования, снижает объёмы общестроительных работ.

Для чего производится измерение удельного сопротивления грунта

Защитное заземление – неотъемлемая часть любых электроустановок, обеспечивающая стекание в землю опасных потенциалов, которые могут возникать на корпусах электрооборудования в результате скопления статики либо нарушения изоляции. Благодаря низкому электрическому сопротивлению системы заземления электрическому току, обеспечивается «кратчайший путь» к контуру заземления, оберегая тем самым людей от электротравм.

В идеале сопротивления заземляющих систем должны равняться нулю, однако на практике достичь таких результатов никогда не удается. Реальное сопротивление складывается из следующих составляющих:

  • сопротивления заземляющих проводников и переходных сопротивлений соединений;
  • общего сопротивления непосредственно заземляющего устройства;
  • переходного сопротивления между грунтом и заземлителем, препятствующим растеканию заземлителя;
  • удельного сопротивления грунта.

Величина первой составляющей при соблюдении рекомендаций ПУЭ при монтаже мала, и ею можно пренебречь, так же как пренебрегают сопротивлением самого контура. Переходное сопротивление забитых в грунт вертикальных заземлителей при отсутствии следов краски и окислов также принято считать мизерным. Таким образом, практически вся «ответственность» за величину сопротивления растекания лежит на удельных сопротивлениях грунта.

Удельное сопротивление грунта, понятие и методики измерений

Удельным сопротивлением любого вещества принято считать электрическое сопротивление между противоположными гранями одного куба этого вещества с длиной грани, равной 1 м. Соответственно величина измерения удельного сопротивления измеряется в Ом·м. Удельное сопротивление слоя грунта может изменяться в широких пределах и зависит от множества факторов, в частности:

  • физического состава почвы (начиная от 8 – 70 Ом·м для глины и заканчивая 2000 – 4000 для скального грунта);
  • влажности, чем выше влажность, тем ниже удельное сопротивление;
  • химического состава грунта, наличие солей снижает сопротивление.

Очевидно, что при одном и том же физическом и химическом составе грунта величины удельного сопротивления будут меняться в зависимости от времени года, от интенсивности выпадения осадков, поэтому для получения объективных значений удельное сопротивление грунта измеряют в засушливое время года.

На сегодняшний день существуют различные методики измерений, и все они требуют наличия комплекта:

  • измерительных приборов;
  • измерительных электродов;
  • измерительных проводов.

Наиболее простым способом считается двухточечный метод, когда между надежным заземлителем и измерительным электродом просто измеряют сопротивление. Такой метод считается приблизительным и требует низкоомного заземления.

Более точным считается трехточечный метод измерениях удельного сопротивления, по ходу которого между двух токовых электродов включается генератор постоянного тока вместе с амперметром, а вольтметр подключается на один из них и потенциальный измерительный электрод, расположенный между токовыми. Значение удельного сопротивления рассчитывается из показаний приборов.

Максимальной точностью обладает четырехточечный метод, при помощи двух токовых и расположенных между ними двух потенциальных электродов. Все вертикальные электроды находятся на равном удалении друг от друга, а величину удельного сопротивления регистрируют с помощью специального прибора, например МС-08.

Измеренные значения помогают в расчетах при проектировании заземляющих систем, но могут измерения проводиться и в других случаях, например для защиты трубопроводов от коррозии или геофизических исследований.

Повышение несущей способности

На площадках с недостаточной несущей прочностью основания необходимо провести работы по повышению несущей способности грунта.

Есть два основных метода:

  • Уплотнение;
  • Химические добавки.

В первом случае для достижения большей плотности в грунт вбивают сваи небольшого размера, сокращая количество пустот в породе.

Во втором случае в толщу земли вводят различные химические добавки, сцепляющие между собой отдельные части грунтов.

Еще один способ улучшить характеристики основания — это устройство песчаной подушки под фундамент. После уплотнения она сможет воспринимать и равномерно передавать нагрузку от здания на залегающие ниже породы. Песок не задерживает влагу, не пучинится и является хорошим основанием для строительства дома.

Выбор контура

Перед расчетом контура Вам предоставляется возможность выбрать один из следующих вариантов заземляющих устройств:

  • Треугольная конструкция, параметры которой определяются еще на этапе проектирования.
  • Линейное сооружение протяженного типа, монтируемое по периметру защищаемого объекта.
  • Модульно-штыревая заземляющая конструкция.

Каждый из перечисленных выше способов сборки и последующего монтажа заземляющих устройств нуждается в подробном рассмотрении.

Треугольная конструкция

Этот вариант изготовления ЗК – самый известный и распространенный среди профессионалов и любителей. Для обустройства такой конструкции потребуется приготовить следующие элементы:

  • Двухметровые металлические стержни (арматурные прутья) в количестве 3-х штук.
  • Столько же стальных перемычек, предназначенных для объединения прутьев в единую конструкцию.
  • Медная шина, необходимая для соединения ЗК с точкой сбора жил от заземляемого оборудования в распределительном шкафу (ГЗШ – главная заземляющая шина).

Плоскость сварного контура с уже вбитыми в землю штырями при обустройстве ЗУ должна располагаться на глубине примерно 30-60 см.

Линейный контур

Линейное заземление выбирается в случае, когда к защитному сооружению требуется подключить несколько единиц оборудования, размещенных на удалении один от другого. Оно состоит из нескольких вбитых в землю штырей (3), расположение которых относительно друг друга выбирается из расчетных данных.

Линейная схема контура заземления для частного дома

От собранной по этой схеме конструкции, как и в случае с треугольником в сторону распределительного щитка с ГЗШ делается отвод (2). Перед тем как рассчитать такой ЗК – следует учесть, что общее число штырей ограничено взаимным влиянием аварийных токов, протекающих в каждом одиночном заземлителе.

Модульно-штыревое заземление

Модульный тип ЗУ применяется в ситуациях, когда площадь на участке перед домом ограничена небольшими размерами и допускается обустройство одной штыревой конструкции.

READ Лекция 1.3.2. диэлектрическая проницаемость

Схема монтажа одиночного заземляющего электрода

Она содержит в своем комплекте следующие элементы:

  • Стальной стержень полутораметровой длины с медным покрытием и имеющейся на
  • рабочей части резьбой.
  • Специальную муфту из латуни, обеспечивающую получение резьбового соединения вертикально вбиваемого штыря с заземляющим отводом.
  • Латунные зажимы особой конструкции, гарантирующие надежное сочленение металлических штырей с соединительной полосой.
  • Наконечники для самих заземляющих стержней.
  • Насадку с ударной площадкой, позволяющую передавать импульс от забивающего инструмента (вибромолота).

Комплект модульно-штыревого заземления

Защитная смазка сохраняется долгое время и не растекается при нагревании штырей и других элементов такого ЗУ. Входящая в состав антикоррозийная лента устойчива к воздействию агрессивных сред и защищает от разрушения всю конструкцию в целом.

Подробно о монтаже модульно-штыревого заземления читайте на этой странице.

Плюсы и минусы твердотопливных отопительных котлов

В твердотопливных котлах используется твердое топливо: топливные брикеты, пеллеты, дрова, уголь. Они имеют относительно низкую теплоотдачу. Для того, чтобы хорошо протопить дом обширной площади, необходимо затратить большое количество топлива и собственных усилий. В данной ситуации топливо будет сгорать довольно быстро за два или четыре часа.

На данный момент времени имеются котлы длительного горения. Топливо можно загружать в них два раза в сутки, а то и раз в 30 часов. Но и у данных котлов есть свои недостатки, например невысокий КПД(70%).

Также возникнет потребность во вспомогательных устройствах — это обустройство дополнительной тяги в некоторых случаях или теплоаккумулятора. Не стоит забывать и о положительных составляющих твердотопливных котлов. Они работают на всех видах твердого топлива и всем, что только может гореть. Добыть такое топливо не составляет труда за умеренную цену. Отопление на твердом топливе является лучшим там, куда не дошла цивилизация и подвод газа осуществится не скоро. И если еще плюс ко всему у Вас большой дом.

Этапы исследования грунта

Определение УГВ

Зная уровень грунтовых вод вы можете определить наличие пучинистости почвы, являющейся одной из отправных точек при выборе фундамента под строительство дома.

Чтобы определить УГВ вам необходимо разработать 5 шурфов глубиной 2.5 по периметру площадки под застройку (4 по углам и 1 в центре). Оставьте скважины на ночь и на следующее утро, с помощью рулетки и обмотанной бумагой рейки, определите расстояние между поверхностью скважины и скопившейся в ней водой. Это и будет УГВ на участке.

Далее установите границу промерзания почвы для вашего региона, воспользовавшись таблицами по климатологии. Если полученный УГВ ниже, чем граница промерзания, значит зимой промерзает пласт сухого, не склонного к пучению грунта, что позволяет возводить здания на мелкозаглубленном фундаменте.

Если же УГВ выше уровня промерзания грунта, значит вы имеете дело с склонной к пучению почвой, в которой необходимо использовать фундаменты глубокого заложения.

Самостоятельное определение типа грунта

Как уже говорилось ранее, важную роль при расчете фундамента имеет тип грунта на месте строительства. Так как геологические работы довольно дороги, не всегда целесообразно их заказывать, особенно при строительстве малоэтажных частных домов. Такие дома имеют обычно небольшой вес, который могут выдерживать большинство грунтов (кроме ила или торфяников). В таких случаях можно самостоятельно определить возможный тип грунта для использования его параметров в расчетах.

Для определения типа грунта необходимо сделать пробный колодец размером 0,8х0,8 м и глубиной до 2,5 м. Через каждые 0,5 м глубины берут пробу земли, маркируют ее и отделяют от других проб, защищая от осадков и внешних воздействий.

После взятия проб на всей глубине шурфа проводятся простые тесты, которые помогу определить тип основания:

  1. Порцию грунта обильно смачивают водой и скатывают ладонями жгут диаметров 12-15 мм и длиной не менее 10-15 см. Далее жгут загибают в кольцо. Если при загибе кольцо распадается на мелкие фрагменты, с большой вероятностью можно предположить, что в данном месте грунт представлен супесями. Если же кольцо распадается на 2-3 фрагмента, то он представлен суглинками. Если кольцо остается целым — дом строится на глиняном основании.
  2. Во втором тесте определяется пористость. Для этого из грунта вырезают кубик со стороной 10 см и взвешивают его. Вес кубика будет представлять объемную массу земли в ее естественном состоянии. Затем кубик уплотняют до максимально плотного состояния, удаляя воздушные поры, и снова взвешивают, определяя массу земли без пор. Соотношение объема каждого кубика к его массе — это объемный вес грунта в естественном и плотном состоянии. Отношение объемных весов обоих кубиков даст нам коэффициент пористости. По данному коэффициенту исходя из нормативных таблиц определяют предполагаемый тип основания. Если при вырезании или сжатии кубик рассыпается на фрагменты, то объем земли с порами известен по размерам кубика, а объем земли без пор можно определить мерным стаканом или другой емкостью.
  3. Третьим показателем, который можно определить самостоятельно, является текучесть грунта. Он определяется субъективно по следующему критерию: если лопата сложно входит в землю, то текучесть равна нулю, если же лопата легко входит, но грунт прилипает к ней, то текучесть равна единице.

По показателям этих тестов определяется возможный тип земляного основания. Для того чтобы перестраховаться от ошибок, величину сопротивления можно взять чуть большую, чем та, которая характерна для определенного типа грунта.

Если же по результатам теста не удалось определить тип грунта или грунт оказался илистым или торфяным, то для расчета лучше пригласить специалистов.

Данная методика позволяет упростить расчет размера ленточного фундамента при строительстве малоэтажных частных домов. Она позволяет определить основные параметры будущего фундамента с достаточной точностью. Если же есть какие-либо сомнения в правильности расчетов, то лучше не рисковать и обратиться к специалистам.

Расчёт несущей способности грунта

Расчет несущей способности грунта зависит от типа грунта. Измерение необходимо проводит с учетом данных о влажности на объекте, для этого в нескольких местах проделываются скважины и высчитывается уровень грунтовых вод. Если в углублениях накапливается вода, то дополнительно нужно измерить уровень воды в них

Особенно данные расчеты важны для глинистых грунтов, так как при сильной важности рекомендуется устанавливать сваи. При расчете несущей способности также нужно учитывать отдельные данные о глубине заложения фундамента и длине и ширине самого основания


Приведенные в таблице данные о несущей способности разных типов грунта используются при расчете фундамента для сравнения с фактической нагрузкой на 1 см2 грунта, исходящей от массы постройки.

Чтобы определить, сможет ли грунт выдержать возводимое на участке строение, необходимо провести следующие расчеты:

  • Высчитать массу дома, умножив площадь его конструктивных элементов (кровли, стен, перекрытий) на удельный вес стройматериалов;
  • Добавить к массе дома снеговые нагрузки, определенные посредством умножения площади кровли на нормативный вес м2 снегового покрова в вашем регионе;
  • Добавить эксплуатационные нагрузки (100 кг на м2 перекрытий дома);
  • Определить вес фундамента, умножив его объем на удельный вес одного кубометра железобетона;
  • Просуммировать полученные нагрузки (1+2+3+4) и умножить их на коэфф. надежности 1.2;
  • Определить опорную площадь фундамента (длина умножается на ширину) и высчитать давление на 1 см2. грунта (общие нагрузки/опорная площадь).

Далее полученная величина сравнивается с фактической несущей способностью почвы. Если нагрузка превышает норму, необходимо увеличивать опорную площадь фундамента и проводить перерасчет.

Дача и Дом

Принимаем размеры свай (вариант A):  диаметр буронабивной сваи d = 0,5 м;  длина буронабивной сваи  l = 3,0 м. Нагрузка, приходящаяся на одну сваю составляет x метров (шаг свай) х 5,5 тонн (нагрузка на погонный метр фундамента ).

Несущую способность набивных свай исходя из грунтовых условий рассчитывают по формуле

P несущая способность сваи = 0,7 коэфф.

однородности грунта х (Rн нормативное сопротивление грунта под нижним концом сваи х F площадь опирания сваи (м2) + u  периметр сваи (м) х  0,8 коэфф.

условий работы х fiн нормативное сопротивление грунта на боковой поверхности ствола сваи х li – толщина несущего слоя грунта, соприкасающегося с боковой поверхностью сваи (м)

В плоскости нижних концов свай залегает крупный песок, плотный влажный с несущей способностью Rн = 70 т/м2.

Площадь сечения (основания) круглой сваи составляет   S= 3,14 D2/4 S= 3,14 х 0,25 / 4 = 0,785/4 = 0,196 м2 Периметр сваи u = 3,14 D = 3,14 x 0,5 = 1,57 м; Дополнительный коэффициент условий работы mf = 0,8; В глинах и в скважинах с водой коэффициент работы сваи вместо 0,8 принимается равным 0,6. (Таблица 7.5 СП 50-102-2003 Проектирование и устройство свайных фундаментов). Нормативное сопротивление грунта на боковой поверхности ствола, принимаемое по табл., составит:  

  1. Для первого тугопластичного слоя грунта (суглинка) глубиной от 0 до 2 метров (среднее – 1 метр) – нормативное сопротивление грунта на боковой поверхности ствола составит от 1,2 до 2,3 т/м2  (См. строку для грунта на глубине 1 метр).  Принимаем самое малое значение сопротивления грунта с запасом 1,2 т/м2
  2. Для второго полутвердого слоя грунта (суглинка) глубиной от 2 до 3 метров (среднее – 2,5  метра) – от 4,2 до 4,8 т/м2 .  Принимаем самое малое значение сопротивления грунта с запасом 4,2 т/м2

Несущая способность сваи по грунту будет: Р = 0,7 х 1 = 15,4 т. Минимально допустимый шаг свай составит 15,4 тонны / 5,5 тонн/м =2,8 метра. Разумно достаточным будет использование шага между сваями 2,5 метра.

Посмотрим, как изменится несущая способность сваи по грунту  при уменьшении диаметра сваи до 40 см (вариант Б): Площадь сечения (основания) круглой сваи составляет   S= 3,14 D2/4 S= 3,14 х 0,2 / 4 = 0,16/4 = 0,125 м2 Периметр сваи u = 3,14 D = 3,14 x 0,4 = 1,25 м; Несущая способность по грунту сваи диаметром 40 см составит:

Р = 0,7 х 1 = 10,7 т.  Такие сваи придется ставить через 2 метра.

Посмотрим, как изменится несущая способность сваи диаметром 50 см при уменьшении глубины ее заложения с 3 до 2-х метров (вариант В):

Важно

При глубине заложения на 2 метра, буронабивная свая будет опираться на слой полутвердого суглинка, а боковые поверхности ствола сваи будут соприкасаться с 2 метровым слоем тугопластичного суглинка. В плоскости нижних концов свай залегает полутвердый суглинок, с несущей способностью Rн = 36 т/м2.

Площадь сечения (основания) круглой сваи составляет   S= 3,14D2/4 S= 3,14 х 0,25 / 4 = 0,785/4 = 0,196 м2 Периметр сваи u = 3,14 D = 3,14 x 0,5 = 1,57 м; Дополнительный коэффициент условий работы mf = 0,8; Нормативное сопротивление грунта на боковой поверхности ствола для тугопластичного слоя грунта (суглинка) глубиной от 0 до 2 метров (среднее – 1 метр) – нормативное сопротивление грунта на боковой поверхности ствола составит от 1,2 до 2,3 т/м2  (См. строку для грунта на глубине 1 метр).  Принимаем самое малое значение сопротивления грунта с запасом 1,2 т/м2 Несущая способность по грунту сваи диаметром 50 см и глубиной 2 метра составит:

Р = 0,7 х1 [36  х 0,196 + 1,57 х 0,8 (1,2 х 2) = 7 т.  Такие сваи придется ставить уже через 1,2 метра.

Из вышеприведенного примера можно сделать два важных вывода:

При  устройстве фундамента важно проводить исследование подлежащего грунта для определения его несущих способностей.  

Расчет несущей способности грунта

Определение несущей способности грунта – это достаточно трудоемкий процесс, который можно выполнить подручными средствами (вручную/онлайн) или же воспользоваться услугами геолого-геодезических агенств. Если вы хотите сэкономить и выполнить расчет самостоятельно – KALK.PRO поможет вам в этом нелегком деле!

Мы предлагаем вам воспользоваться нашим удобным онлайн-калькулятором расчета сопротивления грунта на сжатие/сдвиг. По окончанию вычисления вы получите значение расчетного сопротивления в четырех разных единицах измерения (кПа, kH/m 2 , тс/м 2 , кгс/см 2 ). Для того чтобы получить результат расчета, вам необходимо заполнить несколько полей:

  • Тип расчета. На основании лабораторных испытаний или при неизвестных характеристиках грунта.
  • Характеристики грунта. Тип, коэффициент пористости и показатель текучести, а также осредненное расчетное значение удельного веса грунтов.
  • Параметры фундамента. Ширина основания и глубина заложения.

Последние две характеристики грунта определяются только для глинистых грунтов.

Калькулятор расчетного сопротивления грунта основания

Для начала нам необходимо выбрать тип расчета. Первый вариант подразумевает, что вы получите отдадите образец грунта в специализированную лабораторию на исследование. Данный способ занимает большое количество времени и средств. Поэтому если у вас не сложный участок и вы уверены, что сможете сделать все своими силами, мы предлагаем воспользоваться вторым вариантом и выполнить расчет на основании табличных данных.

Классификация грунтов

Следующий этап работ связан с определением типа грунта. Согласно СНиП 11-15—74, все виды грунтов делятся на две основные группы:

  • скальные;
  • нескальные.

Первые, представлены горными породами, метаморфического или гранитного происхождения. Встречаются в горных областях и в местах выхода основания тектонической платформы на поверхность (щиты). В нашей стране это территория Карелии и Мурманской области. Горные системы Урала, Кавказа, Алтая, Камчатки, плоскогорья Сибири и Дальнего Востока.

Сопротивление скальных грунтов настолько высоко, что вы можете не производить никаких предварительных расчетов.

Нескальные грунты встречаются повсеместно на равнинах. Они подразделяются на несколько видов, а те в свою очередь на фракции:

  • Пески (мелкие, средние, крупные…);
  • Супеси (легкие, тяжелые);
  • Суглинки (легкие, средние, тяжелые);
  • Глины (легкие, тяжелые…).

Как определить тип грунта самостоятельно?

Существует простой дедовский способ определения типа грунта, которым пользовались ваши родители и родители ваших родителей – он заключается в выявлении физико-механических свойств породы.

Для этого необходимо провести отбор проб почвы в крайних точках и в середине участка. Выкопайте ямы на глубину, предполагаемого уровня заложения фундамента и возьмите образецы грунта с каждой контрольной точки.

Подготовьте рабочую поверхность, для того чтобы провести научный эксперимент.

  • Намочите почву до состояния, когда из нее можно будет сформировать шар.
  • Попробуйте раскатать шар в продолговатое тело (шнур).
    • Если у вас не получилось этого сделать, то перед вами песчаная почва.
    • Если немного схватывается, но все равно разрушается – это супесь.
    • Если шнур удается свернуть в кольцо, но наблюдаются разрывы/трещины – это суглинок.
    • Если кольцо замкнулось, а тело осталось невредимым – это глина.

Для наглядности можно посмотреть иллюстрацию ниже:

Если вам не удалось ничего сделать из образца грунта, то для вас расчет несущей способности песчаного грунта закончился. Выберите соответствующий пункт в калькуляторе и нажмите «Рассчитать«.

Из чего состоит заземление

  1. Внешний контур заземления. Располагается за пределами помещений, непосредственно в грунте. Представляет собой пространственную конструкцию из электродов (заземлителей), соединенных между собой неразделимым проводником.
  2. Внутренний контур заземления. Токопроводящая шина, размещенная внутри здания. Охватывает периметр каждого помещения. К этому устройству подсоединяются все электроустановки. Вместо внутреннего контура может быть установлен щиток заземления.
  3. Заземляющие проводники. Соединительные линии, предназначенные для подключения электроустановок непосредственно к заземлителю, или внутреннему контуру заземления.

Рассмотри эти компоненты подробнее.

Внешний, или наружный контур

Монтаж контура заземления зависит от внешних условий. Прежде чем начать расчет, и выполнить проектный чертеж, необходимо знать параметры грунта, в котором будут установлены заземлители. Если вы сами строили дом, эти характеристики известны. В противном случае лучше вызвать геодезистов, для получения заключения по грунту.

Советуем изучить Что такое стабилизатор напряжения

Какие бывают грунты, и как они влияют на качество заземления? Примерное удельное сопротивление каждого типа грунта. Чем оно ниже, тем лучше проводимость.

  • Глина пластичная, торф = 20–30 Ωм·м
  • Суглинок пластичный, зольные грунты, пепел, классическая садовая земля = 30–40 Ом·м
  • Чернозем, глинистые сланцы, полутвердая глина = 50–60 Ом·м

Это лучшая среда для того, чтобы установить наружный контур заземления. Сопротивление растекания тока будет достаточно низким даже при малом содержании влаги. А в этих грунтах естественная влажность обычно выше среднего.

Полутвердый суглинок, смесь глины и песка, влажная супесь — 100–150 Ом·м

Сопротивление немного выше, но при нормальной влажности параметры заземления не выйдут за нормативы. Если в регионе установки установится продолжительная сухая погода, необходимо принимать меры к принудительному увлажнению мест установки заземлителей.

Глинистый гравий, супесок, влажный (постоянно) песок = 300–500 Ом·м

Гравий, скала, сухой песок – даже при высокой общей влажности, заземление в такой почве будет неэффективным. Для соблюдения нормативов, придется устанавливать глубинные заземлители.

Многие владельцы объектов, экономя «на спичках», просто не понимают, для чего нужен контур заземления. Его задача при соединении фазы с землей обеспечить максимальную величину тока короткого замыкания. Только в этом случае быстро сработают устройства защитного отключения. Этого невозможно достичь, если сопротивление растекания тока будет высоким.

Определившись с грунтом, вы сможете выбрать тип, и самое главное — размер заземлителей. Предварительный расчет параметров можно выполнить по формуле:

Расчет приведен для вертикально установленных заземлителей.

Расшифровка величин формулы:

  • R0 — полученное после вычисления сопротивление одного заземлителя (электрода) в омах.
  • Рэкв — удельное сопротивление грунта, см. информацию выше.
  • L — общая длина каждого электрода в контуре.
  • d — диаметр электрода (если сечение круглое).
  • Т — вычисленное расстояние от центра электрода до поверхности земли.

Задавая известные данные, а также меняя соотношение величин, вы должны добиться значения для одного электрода порядка 30 Ом.

Если установка вертикальных заземлителей невозможна (по причине качества грунта), можно рассчитать величину сопротивления горизонтальных заземлителей.

Поэтому лучше потратить больше времени на забивание вертикальных стержней, чем следить за барометром и влажностью воздуха.

И все же приводим формулу расчета горизонтальных заземлителей.

Соответственно, расшифровка дополнительных величин:

  • Rв — полученное после вычисления сопротивление одного заземлителя (электрода) в омах.
  • b — ширина электрода — заземлителя.
  • ψ — коэффициент, зависящий от погодного сезона. Данные можно взять в таблице:

ɳГ — так называемый коэффициент спроса горизонтально расположенных электродов. Не вдаваясь в подробности, получаем цифры из таблицы на иллюстрации:

Предварительный расчет сопротивления необходим не только для правильного планирования закупок материала: хотя будет обидно, если вам не хватит для завершения работ, пары метров электрода, а до магазина несколько десятков километров. Более-менее аккуратно оформленный план, расчеты и чертежи, пригодятся для решения бюрократических вопросов: при подписании документов о приемке объекта, или составлении ТУ с компанией энергосбыта.

Разумеется, никакой инженер не подпишет бумаги только на основании пусть и красиво исполненных чертежей. Будут произведены замеры сопротивления растекания.