Определение расчетного сопротивления грунта основания

Оглавление

Распределение нагрузок на грунт от фундамента

«Иметь твердую почву под ногами» – это не фигура речи для строителей. Это основа всей системы закладки фундамента. Твердая, казалось бы, земля под ногами уступает силам, которые давят на нее при постройке даже небольшого и легкого на вид здания. В течение одного сезона построенный дом может заметно осесть, если фундамент под ним выполнен неправильно.

Расчет предельного давления на грунт для устойчивости дома зависит от многих факторов:

  • Вес здания
  • Площадь основания дома, давящего на землю
  • Свойства грунта
  • Глубина промерзания
  • Глубина залегания подземных вод

Кроме изменений в толще грунта, связанных с давлением на него основания дома, сам грунт подвержен внутренним силам, приводящим в движения почвенные пласты – их называют пучинистостью грунта.

Площадку, оказывающую давление на грунт, называют подошвой фундамента. Чем она больше, тем ниже давление на грунт при одном и том же весе дома.

Способность сопротивляться нагрузкам называют несущей способностью грунта.

Соответственно, определены два пути уменьшения общего давления, оказывающего основанием здания на грунт – увеличение площади давления или увеличение точек соприкосновения основания с грунтом. Площадь соприкосновения определяется типом фундамента – монолитной плиты, ленты по периметру дома или отдельных столбов.


Сопротивление грунта нагрузкам для разных видов фундамента. а — плитный, б — ленточный, в — свайный

Слой почвы, на которую давит фундамент, называют несущим слоем. Давление, оказываемое на верхний несущий слой, передается и на пласты, лежащие ниже. Поэтому необходимо учитывать их структуру и несущую способность.

В связи с тем, что зимой земля промерзает, а летом – оттаивает, это тоже учитывается в расчете несущей способности грунта.

Особенности технологии возведения фундамента в зависимости от вида грунта

С помощью правильно подобранного типа фундамента и соблюдении технологий возведения основы можно создать прочную опору для постройки на любых видах песчаных почв.

Пылеватый и мелкозернистый

Для строительства дома на пылеватом и мелком песке из-за крайней неустойчивости пластов необходимо создать максимально прочную основу. В таких случаях допустимо возведение плиточного фундамента. Для этого снимают плодородный слой земли и отливают бетонную плиту, масштабы которой чуть больше площади планируемого здания. Конструкция не разрушается под воздействием сезонных изменений в почве, так как такой тип основания способен перемещаться вместе с грунтом, поэтому его называют плавающим фундаментом.

Другой более распространенный способ создания прочного основания под постройку на пылеватой и мелкой песчаной почве – применение монолитного ленточного фундамента мелкозаглубленного типа. Рекомендуется делать его трапециевидной формы с расширяющимися книзу линиями. Это способствует значительному уменьшению влияния морозного пучения на основание дома.

Перед заливкой фундаментной ленты траншею оборудуют гидроизоляционным слоем. При закладке конструкции подошвы под строение на мелком песке и пылеватых грунтах особенно важны дренажные работы. В качестве эффективных способов рекомендуют закрытые системы, которые оборудуются на базе дренажных труб.

При работе по возведению подошвы основания для тяжелых зданий на мелком и пылеватом песке стоит использовать свайно-ленточный вариант обустройства фундамента:

  • выполняют разметку, выкапывают котлован, устанавливают опалубку;
  • в местах пересечений ленты пробуривают скважины глубиной до устойчивых пластов почвы;
  • в скважины устанавливают трубы на основе асбестоцемента, качественно выравнивают конструкции, укрепляют распорками;
  • трубы заливают бетонным раствором на 1/3, слегка приподнимают для образования утолщения внизу. Далее трубы заполняют раствором, предварительно опустив в них арматуру.


Опалубка и арматура для свайно-ленточного фундамента Сваи можно залить и без установки труб, если среда не очень влажная и скважины не наполняются водой:

  • нижнюю часть скважины расширяют при помощи специального плуга;
  • в скважину опускают армирующий материал и заливают раствором;
  • после застывания свайных конструкций приступают к заливке ленты в опалубке.

Специалисты отмечают, что после заливки фундамента на мелкозернистом и пылеватом песке конструкция должна простоять в течение полугода перед продолжением строительных работ.

Крупный и гравелистый

Так как крупнопесчаные почвы располагают надежным уровнем несущей способности, здесь актуальны любые виды фундаментных конструкций:

  • если планируется строительство дома без подвала, чаще всего применяют ленточный вариант мелкозаглубленного типа;
  • под строение из легких материалов в виде каркасных сооружений, деревянных домов или щитовых конструкций подходит столбчатое основание;
  • для массивных строений с цокольным этажом выполняют ленточный фундамент сильно заглубленного типа.


Столбчатый фундамент для каркасного дома

При закладке столбчатого или ленточного варианта подошвы основания также задействуют фундаментные блоки или керамический кирпич.

На мелкозаглубленное ленточное основание на крупном песке можно поставить здание из пеноблоков или древесины, каркасный/щитовой вид сооружения или же небольшой кирпичный дом. При этом глубина закладки подошвы варьируется в диапазоне 40-70 см.

Технология заливки монолитной мелкозаглубленной ленты своими руками:

  1. Подготовка участка. Сняв плодородный пласт земли, выровняют поверхность.
  2. Разметка. Работы выполняются на основе проекта дома.
  3. Подготовка траншеи. Выкапывают траншею глубиной 60-80 см. Ширина углубления равна толщине планируемых стен плюс 20 см, то есть по 5 см с обеих сторон стены для устойчивости конструкции и по 5 см для опалубки.
  4. Заливка опалубки бетонным раствором.


Траншеи для сооружения фундамента Для опалубки применяют листы фанеры, обрезную доску, профлист, внутреннюю поверхность выстилают полиэтиленом, для усиления композиции используют армирующие материалы.

При строительстве массивных зданий или домов с жилым цокольным этажом или же подвалом закладывают глубокозаглубленную фундаментную ленту. Притом подошву под кирпичный дом устанавливают на 20 см ниже уровня промерзания почвы. Глубокозаглубленный ленточный фундамент со всех сторон обеспечивается гидроизоляционным слоем, включая и нижнюю поверхность. Также обязательно выполняется качественный дренаж.

Исследование грунта

Исследования состояния грунта важный этап в подготовки к монтажу фундамента. Так, лучше всего обратиться к помощи специализированных компании, оказывающих данные услуги на профессиональной основе. Однако, первичные работы можно провести и самостоятельно — воспользовавшись ориентировочным методом исследования и анализа грунта. Рассмотрим поэтапно:

Для извлечение проб грунта необходим бур

Важно помнить, что от этажности будущего здания зависит глубина на которую нужно проделать лунку.
Так, для одноэтажного дома — это 2-3 метра, для двухэтажного дома — 3-4 метров. Однако, если планируется укладка глубокого фундамента для подвала или цокольного этажа, то бурение самостоятельно выполнить не получиться, так как в этом случае глубина будет соответствующая.
Возникает другой вопрос: достаточно ли одного шурфа? Однозначно нет и это объясняется просто

Фундамент будет залегать на достаточной глубине и в разное время года на него будет воздействовать мороз или влага, что в свою очередь может привести к образованию трещин, сколов, дыр как на самом фундаменте, так и на стенах сооружения.
Как бы не было зафиксировано в СниПах о том, что для небольших одноэтажных достаточно 1-2 шурфов, лучше всего заложить 4-5 для надежности.


На первый взгляд нельзя сразу сказать, какие сюрпризы может скрываться в себе грунта на участке, для этого проводится анализ почвы с каждых 30-40 см шурфа до предельной глубины промерзания грунта. Чтобы определить тип почвы, имеющийся на отведенном под застройку участке, вам необходимо пробурить по периметру площадки 3-4 шурфа глубиной на 2 метра и визуально осмотреть извлекаемую из скважины породу.

  • Глинистая почва — имеет желтоватый либо темно-коричневый цвет. При высокой влажности пластична, позволяет слепить шарик, при сдавливании формирующий ровную, без трещин, лепешку. При низкой влажности имеет повышенную твердость, валун из глины сложно раздавить ногой. Сухая глина — оптимальная для строительства фундаментов порода, обладающая высокой грузонесущей способностью, однако строительство на влажной глине чревато проблемами из-за пучения грунта. Несущая способность сухой глины — до 6 кг/см2, влажной — 1-3 кг/см2;
  • Суглинок — почва, имеющая низкую плотность. В составе содержит 30-35% глины и пылеватые (мелкофракционные) пески. Слепленная из суглинка лепешка имеет множество трещин по краям. Суглинок, из-за низкой грузонесущей способности может давать осадку, а наличие в составе пылеватых частиц обуславливает высокую склонность породы к пучению. Несущая способность сухого суглинка — 3 кг/см2, влажного 1-2.5 кг/с2;
  • Супесь — почва, обладающая минимальной пластичностью (песок и 10% глины). Имеет характерный желтоватый либо рыжий цвет, крошится и рассыпается даже во влажном состоянии. Несущая способность сухой супеси — 3 кг/см2, влажной — от 0.7 до 2 кг/см2;
  • Пылеватый песок — мелкофракционные частицы, визуально напоминающие пыль. Фракции менее 0.1 мм в диаметре, грузонесущая способность в сухом виде — 3 кг/см2, влажном — 1 кг/см2;
  • Средний песок — размер фракций 0.1-1 мм, несущая способность сухого песка — 4 кг/см2, влажного — 1 кг/см2;
  • Крупный песок — имеет фракции 0.1-2 мм. в диаметре, размер которых схож с зернами проса. Несущая способность крупного песка не зависит от насыщенности влагой, она всегда составляет 4-5 кг/см2;
  • Гравелистый песок — обломочная порода, содержащая частицы гравия размером до 5 мм. в диаметре. Имеет постоянную грузонесущую способность в 5 кг/см2.

Рис: Разные виды грунта

Стоит понимать, что проектировать фундамент на основе характеристик грунта, определенных кустарным методом, не подпишется ни одна серьезная проектировочная организация, поскольку самостоятельно выявить фактическую плотность грунта, от которой сильно зависит грузонесущая способность породы, невозможно.

Важно: чтобы избежать проблем в дальнейшем, рекомендуется рассчитывать фундамент исходя из усредненной грузонесущей способности любого типа сухой почвы в 2 кг/см2.Может быть интересным:

  1. Стена в грунте, технология
  2. Несущая способность свай

Характеристики оснований строительных сооружений

Кроме определения опорных характеристик базового уровня, необходимо принять во внимание риски могущие привести к деформации здания. Для этого проверяют грунт по следующим параметрам:. плотность – определяется трудностью взятия образца;текучесть, чем легче прилипает почва к инструменту и дольше держится, тем более высока текучесть;пористость, определяют сравнением объемов измельченной породы и не измельченной;способности к набуханию, изменение объема и формы при намачивании, показывает склонность к просадкам;пучинистость, под влиянием низкой температуры в структуре образуются кристаллы льда, ведущие к изменению объема и формы почвы;способности к проседанию, возможность вертикального сдвига под действием массы при изменении физических свойств почвы

плотность – определяется трудностью взятия образца;текучесть, чем легче прилипает почва к инструменту и дольше держится, тем более высока текучесть;пористость, определяют сравнением объемов измельченной породы и не измельченной;способности к набуханию, изменение объема и формы при намачивании, показывает склонность к просадкам;пучинистость, под влиянием низкой температуры в структуре образуются кристаллы льда, ведущие к изменению объема и формы почвы;способности к проседанию, возможность вертикального сдвига под действием массы при изменении физических свойств почвы.

Неспециалисту сложно точно определить строительные характеристики основания, поэтому в нормативных документах указываются минимальные значения параметров. Что позволяет избежать риска в процессе возведения зданий и повысить запас прочности строения.

Расчет фундамента зданий производят на основании:

типа грунта (природный или искусственный);размеров, конструкции и материала фундамента;

Расчет должен учитывать два предельных состояния основания, это:

несущая способность фундамента;деформационные процессы.

Используя калькулятор по расчету несущей способности земляного слоя, можно определить уровень сопротивления почвы вертикальным нагрузкам. Чем крупнее частицы, составляющие основание, тем выше несущие способности базового уровня.

Таблица: Размеры и процентное отношение частиц грунта

Разновидности грунтаРазмеры частиц, ммСодержание частиц в %Глиняныйдо 0.002—Илистый органическийдо 0,01—Илистый неорганическийот 0,002 до 0,05—Песчаный, гравелистыйболее 2от 25Песчаный, крупныйболее 0,5от 50Песчаный, среднийболее 0,25от 50Песчаный, мелкийболее 0,1от 75Песчаный пылеватыйболее 0,1до 75Валунный, глыбовыйболее 200от 50Галечниковый, щебенистыйболее 10от 50Гравийный, дресвяныйболее 2от 50

Фундамент на крупно- и среднезернистых песках

Случай несложный, и подойдет любой тип фундамента. Если грунтовые воды проходят низко, на глубине 1,80 м и более, оптимален фундамент-лента, столбчатый, или их комбинации. Монолитная армированная мелкозаглубленная лента (МЗЛФ) или фундамент из сборных бетонных блоков ФБС подходят для домов из камня, кирпича и блоков в несколько этажей и с подвальным помещением. Для более легких каркасных домов, или одноэтажных построек из легкобетонных блоков и бруса, достаточным будет опорно-столбчатый фундамент, кирпичный или блочный.

Перед началом строительства всегда производят планировку площадки и убирают весь мусор, а затем делают срезку растительного слоя грунта, на глубину около 20 см.

Столбчатый фундамент не требует сложной технологии. материалы – возможен бетон, бутобетон, пескобетон, блоки. Применение фундаментных блоков размера 200*200*400 мм позволяет выполнять работы своими руками, без привлечения техники. При использовании кирпича для кладки опорных столбов следует помнить, что силикатный кирпич и красный кирпич с низкими характеристиками морозостойкости для фундаментов недопустимы.

Начинают устройство фундамента с расчистки и разметки площадки. Опорные фундаментные столбы располагают в углах дома, на пересечениях несущих стен, то есть в точках с максимальной нагрузкой. План дома переносится на местность посредством монтажа стоек обноски, отметки точек забивкой колышков, по которым натягивают шнуры – оси, обозначенные на плане дома.

Ямы под опорные столбы копают строго по осям. Для монолитного варианта после устройства щебеночной или пескогравийной подушки устраивают рулонную гидроизоляцию, устанавливают опалубку и армокаркас, затем заливают бетон с уплотнением вибратором или штыковкой. По верху опор устраивают ростверк.

Для столбчатого варианта из кирпича или в блочном исполнении под столбы углубляют траншеи до 400 мм, и делают щебеночную подушку, чтоб исключить капиллярный подсос грунтовой воды. По подушке устраивают гидроизоляцию из рулонного материала. Кладку опорных столбов делают с обязательной перевязкой, габарит столбов и зависит от толщины будущих несущих стен. Готовую кладку обмазывают за два раза битумом или битумной мастикой. Вертикальную гидроизоляцию – отсечку выполняют рулонным материалом. Затем приступают к устройству стен.

Определение плотности почвы и уровня грунтовых вод

Плотность определяют в зависимости от пористости основания. В почве есть твердые части, между ними находятся полости, наполненные водой или воздухом в зависимости от условий. Если превысить максимально допустимую нагрузку, сдвиги приведут к разрушению дома. Плотные грунты с малым числом или одиночными кавернами относят к наиболее прочным основаниям. Плотность находят отношением веса почвенного образца при стандартной влажности к объему, который он занимает. Расчет делают по формуле p = B / V, где:

  • B — вес грунта в естественном состоянии, г;
  • V — объем, см3.

Породы, которые залегают неглубоко от поверхности, считаются неплотными, с понижением отметки грунты становятся толще, надежнее и прочнее, т. к. на их давят вышележащие пласты. В России наблюдают пески и глины, есть торфяники, болотистые местности и регионы со скальными породами.

Грунтовые жидкости находят в слабых и рыхлых породах или трещинах плотных пластов. Почвенная влага обычно поднимается постепенно и не имеет напора.

Уровень стояния зависит от факторов:

  • осадки, испарения;
  • температура воздуха, атмосферное давление;
  • изменение состояния водоемов;
  • хозяйственные процессы деятельности людей.

Влага внутри слоев может быть агрессивной, содержать кислоты, щелочи, сульфаты, углекислоту — такие добавки разрушают бетон и металл фундаментов. Определяют уровень жидкости путем бурения в полевых условиях шурфов, которые отрывают на несколько метров, чтобы они были ниже предполагаемой отметки опоры. Скважину накрывают и оставляют на 5 – 7 суток. Если в ней не обнаружена вода, почва не содержит влаги. В другом случае для выполнения строительных работ по правилам нужен дренаж (система отвода воды).

Структура грунта и физические характеристики

Грунт состоит из трех компонентов: твердых частиц, воды и газа. Твердые частицы в основном определяют свойства грунта, а водяные и газовые составляющие могут их существенно изменять. Твердые частицы в почве образуют губчатую структуру. Чем плотнее они сами и чем плотнее они прилегают друг к другу, чем выше сила их сцепления, тем плотнее грунт в целом. Плотность своеобразной «губки» увеличивается с глубиной залегания – верхние слои оказывают давление на нижние. Однако этот фактор не столь существенен на тех глубинах, на которые закладывается фундамент.

Воздух заполняет пористую структуру грунта – чем рыхлее почва, тем больше в ней воздуха.

Для исследования грунтов берут в расчет их физические и механические характеристики. Физические:

  • Плотность самих частиц
  • Плотность «губки»
  • Влажность
  • Пористость
  • Пластичность

Механические:

  • Удельная деформация
  • Удельное сцепление частиц
  • Угол внутреннего трения

Уточнённая таблица с поправками на текучесть и пористость грунта

Существет ещё одна таблица несущей способности, позволяющая более точно определить цифры на участке, где известны коэффициенты пористости и показатели текучести почвы.

Влияние коэффициента текучести грунта на его несущую способность указаны в таблице. Средняя текучесть грунта зависит от его типа и коэффициента водонасыщения. Эти расчёты выполнить достаточно трудно, поэтому размещаем таблицы, которые описывают поведение образца грунта, характеризующее его текучесть.

Также расчетное сопротивление зависит от коэффициента пористости Е, который нужно устанавливать с помощью экспериментального взятия проб непосредственно на будущей строительной площадке.

Для теста потребуется взять кубик грунта 10х10Х10 см с объёмом О1 = 1000 см³ так, чтобы он не рассыпался. Далее этот кубик взвешивается и определяется его масса (М), после чего грунт измельчают. Затем, с помощью мерного стакана устанавливается объём измельченного грунта также в кубических сантиметрах (О2).

Далее нужно узнать объёмный вес исходного кубика (ОВ1) и измельченного грунта без пор (ОВ2). Для этого следует определенную вначале массу (М) разделить на (О1), чтобы получить (ОВ1) и затем разделить эту же величину (М) на (О2), чтобы получить (ОВ2). Исходный объём О1 изначально известен и равен 1000 см³, а объём измельченного грунта О2 берется из опыта с мерным стаканом.

Осталось только рассчитать пористость Е, которая равна 1 — (ОВ1/ОВ2)

Теперь, зная коэффициент текучести и пористость грунта, можно исходя из табличных цифр с определенной точностью сказать, какая именно несущая способность является расчетной именно для вашего участка. Если вы использовали экспериментальное выявление пористости, то убедитесь, что было проведено хотя бы 3 опыта, чтобы получить нужную величину с достаточно высокой точностью. При желании получить максимально близкие к реальности данные, используйте специальный калькулятор, где есть возможность указывать все влияющие на конечную цифру коэффициенты вот здесь.

Прибор для определения несущей способности грунта

При выборе типа и параметров фундамента для строительства дома необходимо знать несущую способность грунтана строительном участке. В первую очередь исследуется тип грунта, затем определяется его несущая способность.

Снеговые нагрузки

Снежный покров, который собирается на кровле в холодный период года, необходимо учитывать при расчете нагрузки на грунт. Количество снега в регионах отличается. Для проектирования используют нормативные значения веса снегового покрова, взятые из строительных правил. В СНиП территория разделена на снеговые районы и указана нормативная нагрузка в них:

  • I – 80 кг/м2;
  • II – 120 кг/м2;
  • III – 180 кг/м2;
  • IV – 240 кг/м2;
  • V – 320 кг/м2;
  • VI – 400 кг/м2;
  • VII – 480 кг/м2;
  • VIII – 560 кг/м2.

Расположение районов лучше смотреть на карте в нормативных документах. В общем, для европейской части южные регионы относят к I–II району (громе горной части, которая принадлежит VIII району), центральные области (в том числе Москва и Санкт-Петербург) к III, Тверь, Нижний Новгород, Казань к IV, север к V снеговому району.

Кроме этого учитывают и конструкцию крыши, ее уклон. Для этого применяют коэффициент перехода μ (мю). Он составляет:

  • при уклоне до 30° μ=1;
  • 30–60° μ=0,7:
  • круче 60° – μ=0.

Имея все значения – площадь крыши, нормативные значения веса снежного покрова, уклон – высчитывают максимальную нагрузку на фундамент от снега: S=Sнорм · μ. При площади крыши 30 м2 с уклоном 30° в Москве общее значение будет: S=180×1×30 = 5400 кг.

Выбор строительной площадки

Местоположение строительной площадки определяется в соответствии с назначением возводимого здания и типом его конструкций. Строительная площадка выбирается без наличия наледи и отсутствия паводковых вод.

Участки земли, расположенные у подножия гор, зачастую насыщены наледями, вздутиями пучинистых грунтов и глубинными прожилками льда. На пологих склонах такие явления не наблюдаются. Такие участки наиболее приемлемы для строительства.

Для оценки пригодности участка под строительство производят геодезическую съёмку. Также делают съёмку окружающей местности. Это позволит обрисовать всю картину направления естественных водных потоков, возможность их отвода и устройства канализационных каналов.

Несущая способность грунтов.

Несущая способность грунтов – это одна из его основных характеристик, которую необходимо знать при строительстве дома, она показывает какую нагрузку может выдержать единица площади грунта и измеряется в кг/см2 или т/м2. По несущей способности грунта определяют, какой должна быть опорная площадь фундамента дома: чем хуже способность грунта выдерживать нагрузку, тем больше должна быть площадь фундамента. Сама несущая способность грунта зависит от трех факторов: тип грунта, степень его уплотненности и насыщенность грунта влагой. Увеличение влажности грунта снижает его несущую способность в несколько раз. Только крупные пески и пески средней крупности не меняют свои свойства при увеличении влажности. Избыточная влажность грунта, скорее всего, связана с высоким уровнем грунтовых вод. Чтобы узнать несущую способность грунта не обязательно обращаться за помощью к геологам, в случае самостоятельного строительства дома можно определить тип грунта на глаз. Для этого простым земляным буром можно пробурить в земле скважину глубиной 2 м или выкопать яму лопатой. При этом сразу будет понятно, какой грунт находится на этой глубине и насколько он увлажнен. Далее по типу и увлажненности грунта определить его несущую способность. На территории нашей страны в основном преобладают песчаные и глинистые грунты, за исключением болотистой местности с просадочными торфяными грунтами, а также горных хребтов и возвышенностей со скальными грунтами.

Отличить песок от глины не составляет труда: в песке ясно видны отдельные песчинки, при растирании песчаного грунта меду ладонями они отчетливо чувствуются. Крупный песок имеет размер частиц от 0,25 до 5 мм, такие частицы хорошо видны невооруженным глазом, а песок средней плотности имеет размер песчинок до 2 мм. Супесь содержит 3-10% глинистых частиц, в сухом состоянии она крошится, если скатать из нее шарик, то он рассыпается при легком давлении на него. Суглинок содержит от 10% — 30% глинистых частиц, обладает большей пластичностью, чем супесь. Если из суглинка сделать шар и раздавить его, то он превращается в лепешку с трещинами по краям. Глина – наиболее пластичный грунт, содержит более 30% глинистых частиц ,если раздавить шар, сделанный из глины, то он превратится в лепешку, на краях которой не будет трещин. Есть еще один метод определения типа глинистого грунта.

Исследуемый образец грунта укладываем в стеклянную банку на ¼ её высоты; доливаем в банку воды до уровня ¾ высоты; добавляем в воду 1 чайную ложку средства для мытья посуды; закрываем банку крышкой и встряхиваем содержимое в течение 10 минут. За это время образец грунта разделится на составляющие; банку ставим и через 1 минуту отмечаем на ней маркером уровень песка, который осел на дне; уровень ила отмечаем через 2 часа; ждем пока вода станет прозрачной и отмечаем уровень слоя глины. Процесс осадки глины достаточно длительный и может занять от 2 до 7 дней; находим толщину слоя песка, ила и глины. Например: уровень песка через 1 минуту составил 6 см, уровень ила 7 см от дна банки, уровень глины 10 см от дна банки. vk.com/postroim_svoi_dom Тогда: толщина слоя песка 6 см, толщина слоя ила 1 см (7-6=1), толщина слоя глины 3 см (10-7=3), а общая толщина осадка 10 см; вычисляем относительную величину каждого вида осадка (в процентах): толщину слоя песка/ила/глины делим на общую толщину осадка, затем умножаем на 100 процентов: 6/10*100% =60% — содержание песка в %;

1/10*100%=10% — содержание ила (пыли) в %;

3/10*100%=30% — содержание глины в %.

Расчетное сопротивление грунта на разной глубине.Величины расчетного сопротивления грунтов (R0), приведенные ниже , даны для глубины заложения фундамента 1,5…2 м.

Если глубина заложения фундамента меньше чем 1,5 м. то расчетное сопротив¬ление грунта (Rh) определяется по формуле: Rh = 0,005R0(100 +h/3), где h — глубина заложения фундамента в см. Пример 1.Глинистый грунт на глубине 0,5 м при R0=4 кг/см2 будет иметь расчетное со¬противление грунта Rh = 2,33 кг/см2. Если глубина заложения фундамента больше чем 2 м. то расчетное сопротивление грунта (Rh) определяется по формуле: Rh = R0 + kg(h — 200), где h — глубина заложения фундамента в см, g — вес столба грунта, расположенного выше глубины заложения фундамента (кг/см2); к — коэффициент грунта (для песка — 0,25; для супеси и суглинка — 0,20; для глины — 0,15). Пример 2.Глинистый грунт на глубине 3 м при R0=4 кг/см2 будет иметь расчетное сопро¬тивление Rh = 10,3 кг/см2. Удельный вес глины — 1,4 кг/см2, а вес столба глины высо¬той 300 см — 0,42 кг/см2.

Расчет фундамента несущей способности грунта

Прочность грунта под подошвой фундамента и его устойчивость имеют немаловажное значение. Когда грунт отвечает заявленным требованиям, то сдвиг здания, трещины, разрушения стен и прочие неприятности исключены

На несущую способность грунта влияют:

  • Нагрузки
  • Распределение центра тяжести площади относительно нагрузки
  • Ширина, высота, форма, вес фундамента
  • Тип и особенности грунта
  • Величина погружения фундамента
  • Степень однородности почвы
  • Прочие факторы: вибрация, наличие грунтовых вод, глубина промерзания, сейсмичность и т.д.

Расчет несущей способности основания фундамента

Данный вид расчета необходим, если на основание оказывают воздействие различные нагрузки. Влияние могут оказывать:

  • Возводимые рядом объекты
  • Вибрация, вызванная работой промышленных предприятий
  • И даже автомагистрали, расположенные в непосредственной близости.

Несущая способность должна рассчитываться, если дом возведен на уклоне или уклон появился после его возведения. Анализ ситуации необходим, если фундамент расположен на влагонасыщенных почвах, на него может воздействовать выталкивающая сила или нужно просто проверить устойчивость склонов. Расчет выполняется строго согласно СНиП. В учет берется:

  • Коэффициент условий работы
  • Предельное сопротивление основания дома всем видам нагрузки
  • Коэффициент надежности по назначению здания.

РНС свайного фундамента – важная задача на этапе проектирования

Преимущество свайного фундамента в том, что он имеет высокую прочность даже в слабых грунтах, ведь опоры погружаются на достаточно большую глубину до несущего грунта:

  • Он позволит гарантировать устойчивость здания
  • Имеет более доступную стоимость, нежели ленточный фундамент
  • При малой несущей способности грунта является единственным возможным решением.

Правильно выполненный расчет является гарантом надежности и долговечности дома. При этом вам не придется выкапывать глубокие траншеи, ведь можно использовать даже буронабивные или винтовые сваи.

РНС по несущей способности грунта

Чтобы определить наиболее выгодное сочетание, то расчетная нагрузка, передаваемая на сваю, должна быть меньше или равна расчетной нагрузке, которая на нее допускается. Для определения величины необходимо сначала определить расчетную несущую способность грунта и разделить ее на коэффициент надежности.

Расчет сложный и ответственный. Любая ошибка может иметь массу негативных последствий, поэтому доверить работу лучше надежным исполнителям.

РНС ленточного фундамента: быстро, качественно, надежно

Преимущество ленточного фундамента в его универсальности. Его можно изготовить из монолитного и сборного бетона, использовать в частном и промышленном строительстве. Но гарантировать надежность ленточного фундамента позволит только тщательно и правильно выполненный расчет. Для расчета нужно знать глубину заложения фундамента, ширину подошвы и ленты. Работа проводится в несколько этапов:

  • Нужно изучить характеристики грунта
  • Назначение глубины заложения
  • Собрать нагрузки

И только после этого определить несущую способность.

Расчет осадки и несущей способности основания фундамента «под ключ»

«RNS SPB Company» работает на рынке услуг уже более 10 лет, за это время мы решили проблемы сотен предприятий и тысяч частных застройщиков. В нашем штате работают опытные квалифицированные расчетчики, которые прошли обучение у разработчиков специализированных расчетных программ, поэтому готовы компетентно разобраться в самом сложном вопросе.

Мы беремся за самые сложные и нестандартные проекты, минимизируем участие клиента и даже самостоятельно собираем расчетные данные. Мы выполняем расчеты в нескольких программах и осуществляем поддержку проекта на всех этапах. Звоните и заказывайте! Только у нас вы получите индивидуальный подход, качественное исполнение, оперативные сроки работы и самые доступные цены.

Таблица средней несущей способности различных грунтов

Далее следует таблица с указанием средних цифр несущей способности или, как её ещё называют, расчетного сопротивления разных типов грунта в кгс/см².

Более точные расчеты с учётом всех коэффициентов, которые отображают влияние каждого существующего в реальных условиях фактора, можно выполнить следуя рекомендациям в нормативном своде правил за 2011 год СП 22.13330.2011 с названием Основания зданий и сооружений. Это официальное издание более старого стандарта СНиП 2.02.01-83*, выполненное научно-исследовательским институтом имени Н.М. Герсеванова.

В приведенной таблице отображены усреднённые результаты расчётов, проведенных с использованием формул и данных, основанных на описанном выше своде правил 2011 года.

Здесь можно видеть, что существует достаточно большой разброс в показателях сопротивления грунта. Это обусловлено в первую очередь влажностью почвы, которая непосредственно зависит от уровня залегания грунтовых вод.

Если нужно получить цифры в МПа или в Н/см², то можно перевести указанные в таблице значение согласно установленным соотношениям величин.

  • 1 кгс/см² = 0,098 МПа или 1 МПа = 10,2 кгс/см²1 кгс/см² = 9.8 Н/см² или 1 Н/см² = 0.102 кгс/см²

Для удобства существует также таблица, где указаны средние цифры расчетного сопротивления грунта в Н/см²

Аналогичная проблема с таблицами подобного рода — очень существенное различие между минимальными и максимальными значениями. В общем случае рекомендуется брать минимальные показатели, которые указаны в табличных данных. Для примера разместим ещё одну таблицу, наглядно иллюстрирующую подход зарубежных специалистов к обнародованию данных своих исследований.

Очевидно, что табличные цифры используются, как правило, теми, кто принял решение не заказывать профессиональное геологическое исследование почвы на своём участке. Поэтому имеет смысл давать показатели с запасом, чтобы при самостоятельных расчетах, даже если в них закрадется небольшая погрешность, это не привело к непоправимым последствиям.

В то же время даже при значительном запасе по прочности не факт, что конструкция здания будет достаточно стабильно стоять на основании в течение десятков лет. За такой срок качество грунта может измениться, если не были соблюдены соответствующие меры по защите фундамента от скопления осадочных вод. Для этих целей обязательно следует изготавливать отмостку с хорошей гидроизоляцией и дренажную систему по периметру постройки для централизованного сбора стоков.