Оглавление
Дифференциальный автомат: целесообразность применения
При устройстве и реконструкции электропроводки профессионалы сходятся во мнении о целесообразности использования дифференциальных автоматических выключателей.
Дифференциальные автоматы относятся к предохранительным устройствам, которые защищают систему электроснабжения от замыкания, перегрузок в сети, а также от утечки тока. Чаще всего дифференциальные автоматы устанавливаются в распределительных электрических щитах. Используются в жилых домах, коттеджах, административных зданиях.
Что обеспечит дифавтомат при возникновении короткого замыкания, перегрева электрической проводки или утечки на землю? Дифференциальный автомат в этих случаях создаст контролируемую линию.
Имеет дифавтомат преимущества и касательно установки. Он занимает меньше места в электрическом щитке и при установке дифференциального автомата отсутствует необходимость подбора УЗО, т.к. оно уже является составляющей автомата. Кроме того установка дифференциального автомата упрощает монтаж и сокращает количество точек присоединения проводов.
Ошибки и их последствия при подключении УЗО
Как и любая электрическая схема, схематическое изображение подключения защитного устройства в общую сеть, должно быть составлено, как и прочитано в дальнейшем, без малейших изъянов. Даже самый скромный недочёт может привести к неисправной работе системы в целом или самого УЗО, в то время как серьёзные отклонения могут принести довольно серьёзный ущерб. Ошибки могут быть допущены самые разные, но среди них можно выделить ряд наиболее распространённых:
- Нейтраль и заземление соединяются после УЗО. В данном случае можно неверно интерпретировать схему, соединив , с открытой частью электроустановки или с нулевым защитным проводником. В обоих случаях итог будет идентичен.
- УЗО может быть подключено неполнофазно. Допущение такой ошибки приведёт к ложному срабатыванию, возникающему, из-за того, что до УЗО нагрузка была подключена к нулевому рабочему проводнику.
- Пренебрежение правилами соединения в розетках нулевого и заземляющего проводника. Проблема кроется в процессе установки розеток, в котором допускается соединение защитного и нулевого рабочего проводников. При этом устройство будет срабатывать даже тогда, когда в розетку ничего не подключено.
- Объединение нулей в схеме с двумя устройствам защиты. Распространённой ошибкой является неправильное соединение в зоне защиты нулевых проводников обоих УЗО. Она допускается из-за невнимательности и неудобства электромонтажа внутри стеновой панели. Оплошность приведёт к неконтролируемым выключениям устройств.
- Применение двух или более УЗО усложняют работу по подключению нулевых проводов. Последствия невнимательности могут быть довольно серьёзными. Не поможет и тестирование, так как при нём работа устройства не вызовет никаких нареканий. Но первое же подключение электроприборов может вызвать ошибку и срабатывание всех УЗО.
- Невнимательность при подключении фазы и нуля, если они взяты с разных УЗО. Проблема возникает при соединении нагрузки с нулевым проводником, относящимся к другому устройству защиты.
- Несоблюдение полярности подключения, что выражается в подключении фазы и нуля, соответственно сверху и снизу. Это спровоцирует движение токов в одном направлении, вследствие чего создаются условия для невозможности взаимокомпенсации магнитных потоков. Это говорит о том, что перед покупкой нового УЗО следует внимательно изучить принцип подключения старого, так как расположение клемм может быть отличным.
- Пренебрежение деталями при подключении трехфазного УЗО. Распространённой ошибкой в подключении четырёхполюсного УЗО является использование клемм одноимённой фазы. Тем не менее, работа однофазных потребителей никак не повлияет на работу такого защитного устройства.
Ошибки при подключении УЗО
Посмотрите видео, где рассказано о подключении УЗО:
- Почему узо выключается сам (выбивает узо)? основные причины
- Чем отличается узо от дифавтомата. подключение дифференциального автомата
- Как правильно подключить узо
- 5 опасных признаков того, что в вашем доме утечка электричества
- Схемы подключения узо в трехфазной сети
- Правильный выбор трансформатора тока по госту
- Как правильно подключить автоматический выключатель
- Как пользоваться мультиметром правильно
- Как перевести амперы в ватты и обратно?
- Трёхфазный автоматический выключатель с25
- Две схемы реле времени с задержкой выключения на 220в
- Сечение кабеля по току
- Схема участка электрической цепи
- Расчет сопротивления параллельного соединения резисторов
- Основные неисправности автоматов и причины их возникновения
- Почему водонагреватель бьет током и что делать
- Как проверить основные параметры аккумулятора мультиметром
- Как проверить заземление
- Как подключить дифавтомат по схеме и зачем это нужно
- Что такое гребенка для автоматических выключателей
- Выбор автомата по мощности
- Как измерить сопротивление петли фаза-ноль?
- Что такое дроссель и для чего он нужен?
- Что такое твердотельное реле, назначение, принцип работы
- Расчет резистора для светодиода: как подобрать токоограничивающий элемент
С этим читают
- Почему узо выключается сам (выбивает узо)? основные причины
- Чем отличается узо от дифавтомата. подключение дифференциального автомата
- Как правильно подключить узо
- 5 опасных признаков того, что в вашем доме утечка электричества
- Схемы подключения узо в трехфазной сети
- Правильный выбор трансформатора тока по госту
- Как правильно подключить автоматический выключатель
- Как пользоваться мультиметром правильно
- Как перевести амперы в ватты и обратно?
- Трёхфазный автоматический выключатель с25
Что такое утечка тока и чем она грозит
Известно, что за работу электрического оборудования отвечает ток, который движется по проводам. При наличии однофазной сети будет два провода: фаза и ноль. В сети с тремя фазами будет четыре провода: три фазы и один ноль. При любых обстоятельствах движение тока происходит по фазе, а возвращается назад он через ноль.
Если сказать по-другому, сколько электротока поступает в ваше жилище, столько же и уходит. Этот процесс может протекать без перебоев длительное время, к примеру до того момента, как соседи сверху вас затопят. Это приводит к тому, что промокнут не только перекрытия, но и проводка, тогда энергия с проводов начнет «стекать» вниз. Проблема заключается в том, что входящий по фазе электроток будет становиться выше выходящего через ноль.
Подобная неисправность провоцирует следующие последствия:
- Высокий расход электроэнергии.
- Возгорание.
- Удар электротоком.
Наиболее распространенной проблемой является высокий расход электроэнергии. Получается, что жильцы платят за поступление тока, который, по сути, является бесполезным. Тем не менее, это не главная опасность, ведь место утечки постепенно перегревается. Результатом всего этого бывает возгорание, которое может произойти в неожиданный момент. Иногда это становится причиной гибели жильцов.
Следует рассмотреть и другой исход ситуации. К примеру, из-за поломки водонагревателя или стиральной машины под напряжением оказывается вся корпусная часть прибора. Если у оборудования отсутствует заземление (что бывает часто в квартирах старой планировки), то в случае прикосновения к нему утекающий ток пройдет через тело.
Схемы подключения УЗО в однофазной сети
Большинство бытовых потребителей питаются по однофазной схеме, где для их электроснабжения используется один фазный и нулевой проводник.
В зависимости от индивидуальных особенностей сети однофазное питание может осуществляться по схеме:
- с глухозаземленной нейтралью (TT), в которой четвертый провод выполняет роль обратной линии и дополнительно заземляется;
- с совмещенным нулевым и защитным проводником (TN-C);
- с разделенным нулем и защитным заземлением (TN-S или TN-C-S, при подключении приборов в помещении отличия между этими системами вы не обнаружите).
Следует отметить, что в системе TN-C согласно требований п 1.7.80 ПУЭ не допускается применение дифференциальных автоматов, кроме защиты отдельных устройств с обязательным совмещением нуля и земли от прибора до УЗО. В любой ситуации при подключении УЗО следует учитывать особенности питающей сети.
Без заземления
Так как далеко не все потребители могут похвастаться наличием третьего провода в своей проводке, жильцам таких помещений приходиться обходиться тем, что есть. Наиболее простой схемой подключения УЗО является установка защитного элемента после вводного автомата и электрического счетчика. После УЗО актуально подключать автоматические выключатели для различной нагрузки с соответствующим током отключения. Заметьте, что принцип работы УЗО не предусматривает отключение токовых перегрузок и коротких замыканий, поэтому их обязательно устанавливают вместе с автоматическими выключателями.
Рис. 1: Подключение УЗО в однофазной двухпроводной системе
Такой вариант актуален для квартир с небольшим количеством подключаемых приборов. Так как при коротком замыкании в каком-либо из них отключение не принесет ощутимых неудобств, а отыскание повреждения не займет много времени.
Но, в случаях, когда используется достаточно разветвленная схема электроснабжения, в ней могут использоваться несколько УЗО с различной величиной тока срабатывания.
Рис. 2: подключение УЗО в разветвленной однофазной двухпроводной системе
В этом варианте подключения устанавливаются несколько защитных элементов, которые подбираются по номинальному току и току срабатывания. В качестве общей защиты здесь подключается вводное противопожарное УЗО на 300 мА, за ним проводится нулевой и фазный кабель до следующего устройства на 30 мА одно для розеток, а второй на освещение, для ванной и детской устанавливается пара агрегатов на 10 мА. Чем меньший номинал срабатывания используется, тем более чувствительной будет защита – такие УЗО сработают при значительно меньшем токе утечки, что особенно актуально для двухпроводных схем. Однако устанавливать чувствительную автоматику на все элементы также не стоит, так как она имеет большой процент ложных срабатываний.
С заземлением
При наличии заземляющего проводника в однофазной системе применение УЗО более целесообразно. В такой схеме подключение защитного провода к корпусу приборов создает путь для утечки тока при нарушении изоляции проводов. Поэтому срабатывание защиты произойдет сразу при повреждении, а не в случае поражения током человека.
Рис. 3: Подключение УЗО в однофазной трехпроводной системе
Посмотрите на рисунок, подключение в трехпроводной системе производится аналогично двухпроводной, так как для работы устройства требуются только нулевой и фазный проводник. Заземляющий подключается только к защищаемым объектам через отдельную шину заземления. Ноль также может подводиться к общей нулевой шине, с нулевых контактов он разводится проводами к соответствующим приборам, подключаемым в сеть.
Как и в двухпроводной однофазной схеме, при большом количестве потребителей (кондиционера, стиралки, компьютера, холодильника и прочих благ цивилизации) крайне неприятным вариантом является зависание всех вышеперечисленных электронных схем с потерей данных или нарушением их работоспособности. Поэтому для отдельных устройств или целых групп можно установить несколько УЗО. Конечно их подключение обернется дополнительными затратами, но сделает отыскание повреждений более удобной процедурой.
Дифференциальный автомат – защищает от всего
Автоматический выключатель дифференциального тока или дифавтомат – это устройство, которое совмещает в себе функции защиты от коротких замыканий и перегрузок, а также от утечки тока. Простыми словами: дифавтомат – это автоматический выключатель и УЗО в одном корпусе.
Давайте разберемся в особенностях дифавтоматов и их обозначениях. Для примера рассмотрим АВДТ32ЕМ от IEK.
На лицевой панели видим внутреннюю схему аппарата, где чётко видны элементы, отвечающие за отключение цепи при перегрузках: тепловой расцепитель обозначен красной цифрой 1, а электромагнитный расцепитель – красной цифрой 2. Силовые контакты размыкают фазный и нулевой проводник, но расцепители установлены только в фазном полюсе (автоматы такой конструкции называются 1P+N).
У дифференциальных автоматов АВДТ32ЕМ от IEK время-токовая характеристика электромагнитных расцепителей может быть двух типов: B и C. Чувствительность к перегрузке при этих характеристиках такая же, как и у обычных автоматов, то есть АВДТ32ЕМ типа В сработает при токах выше номинального в 3-5 раз, а АВДТ типа С – при перегрузках в 5-10 раз.
АВДТ32ЕМ – защищает и от утечек тока. Красной цифрой 3 на схеме и пунктирной линией выделен дифференциальный трансформатор и исполнительное реле. Как только сила тока в нуле и в фазе будет отличаться на величину, большую, чем половина от номинального дифференциального тока отключения, аппарат сразу же разомкнёт цепь и отключит неисправную линию.
По схеме видно и то, что это электромеханический дифавтомат, а об этом же говорят буквы «ЕМ» в названии АВДТ32ЕМ.
Теперь разберемся, в чем эти отличия заключаются на практике. Для работы электромеханических АВДТ не нужно напряжение питания. Они срабатывают, если есть разница между токами в проводах, а для работы электронных аппаратов нужно наличие питания (фазы и нуля).
С точки зрения безопасности, разница заключается в том, что если у вас «отгорит» ноль на вводе и при этом произойдёт утечка тока или вы попадёте под напряжение по другой причине, то электронный АВДТ не сработает. У него не будет питания, а электромеханический АВДТ сработает в любом случае. Тоже самое касается и УЗО.
То есть у электромеханических дифференциальных выключателей есть следующие преимущества:
- Не зависят от напряжения питания, сохраняют работоспособность при обрыве нулевого проводника.
- Не выходят из строя от импульсного перенапряжения.
- Не потребляют энергию для собственного питания.
Отметим, что АВДТ32ЕМ выпускаются с разным номинальным отключающим дифференциальным током. Это могут быть 10, 30 или 100 миллиампер, что позволяет их использовать в «мокрых» линиях, на групповых линиях розеток или освещения и в качестве общего дифавтомата для нескольких групп или на вводе.
Кстати, в некоторых случаях, если во время пожара при возгорании изоляции через неё возникнет ток утечки на землю, дифавтомат также среагирует на это и отключит линию, не дав развиться пожару.
При выборе дифавтомата стоит обращать внимание на еще две характеристики: тип тока утечки, на который он реагирует (1 на иллюстрации ниже), и коммутационная способность (2)
У рассматриваемого дифавтомата АВДТ32ЕМ рабочая характеристика по виду дифференциального тока типа А – он сработает при утечках как синусоидального тока, так и постоянного пульсирующего тока. Дифавтоматы типа АС срабатывают только при синусоидальном токе.
Поэтому в квартирных электрощитах лучше использовать АВДТ типа А.
Типы характеристик по наличию по наличию в дифференциальном токе составляющей постоянного тока четко указаны в ГОСТ Р 51327.1, цитата:
Цифрой 2 на рисунке выделено обозначение коммутационной способности. Здесь написано 6000 и обведено прямоугольником, значит, рассматриваемый дифавтомат может размыкать цепи с током короткого замыкания до 6000А.
Данный параметр есть у всех автоматических выключателей, УЗО и дифавтоматов. У модульной продукции для квартирных электрощитов коммутационная способность бывает 4500А и 6000А. Считается, чем он выше, тем надёжнее и устойчивее аппарат к отключению цепей при коротких замыканиях.
Предыдущая
Автомобильные лампыОбзор светодиодных ламп Recarver Type R типа H7
Подключение
Подключение дифавтомата – весьма несложный процесс. Верхняя часть дифференциального автомата содержит контактные пластины и зажимные винты, предназначенные для подключения нуля N и фазы L от счётчика. Нижняя часть располагает контактами, к которым и подключается линия с потребителями.
Подключение дифавтомата можно представить следующим образом:
- Зачистка концов проводников от изоляционного материала примерно на 1 сантиметр.
- Ослабление зажимного винта на несколько оборотов.
- Подключение проводника.
- Затягивание винта.
- Проверка качества крепления простейшим физическим усилием.
Выбор между конфигурацией УЗО + автомат и обычным дифавтоматом должен обуславливаться наличием места в щитке и ценой самих устройств. В первом варианте сложность монтажа слегка возрастёт.
В случае с однофазной сетью в 220 В, используемой в большинстве квартир и домов, необходимо использовать двухполюсное устройство. Монтаж дифференциального автомата в данном случае можно провести двумя способами:
- На входе после электросчётчика для всей квартирной проводки. При использовании данной схемы питающие провода подключаются к верхним клеммам. К нижним же подаётся нагрузка от различных электрических групп, разделённых автоматическими выключателями. Существенным минусом данного варианта является сложность поиска причины выхода из строя в случае срабатывания автоматики и полное отключение всех групп при неполадках.
- На каждую группу потребителей по отдельности. Этот метод применяют для защиты в помещениях, где отмечается повышенный уровень влажности воздуха – ванные, кухни. Актуален метод и для мест, где электробезопасность должна быть на высшем уровне – например, для детской. Понадобится несколько дифференциальных автоматов – несмотря на большие затраты, данный способ является наиболее надёжным и гарантирующим бесперебойное электроснабжение, а срабатывание любого из дифавтоматов не заставит сработать остальные.
При наличии трёхфазной сети в 380 В нужно применять четырёхполюсный дифавтомат. Вариант используется в новых домах или коттеджах, где устройству необходимо выдерживать высокие нагрузки от электроприборов. Использовать такое подключение дифавтоматов можно и в гаражах в связи с возможным использованием мощного электрооборудования.
Можно сделать вывод, что схема подключения дифференциальных автоматов мало чем отличается от аналогичных схем для УЗО. На выходе устройства должны быть подключены фаза и ноль от защищаемого участка сети. Безопасность именно этой группы и будет контролироваться.
Дифференциальные автоматы успешно применяются и в однофазных, и в трёхфазных сетях переменного тока. Установка такого устройства значительно повышает уровень безопасности при эксплуатации электроприборов. Кроме того, дифференциальный автомат может поспособствовать предотвращению пожара, связанного с возгоранием изоляционного материала.
Чем отличается УЗО от дифавтомата
Как правильно подобрать УЗО для квартиры или частного дома
Схема подключения УЗО и автоматов в щитке
Что такое УЗО — назначение, принцип действия, маркировка и виды
Что такое реле напряжения и для чего оно нужно в квартире
Почему при включении или во время работы стиральной машины выбивает пробки, УЗО или дифавтомат
Обозначение дифавтомата на схеме
Ни один человек, каким бы талантливым и смекалистым он не был, не сможет научиться понимать электрические чертежи без предварительного знакомства с условными обозначениями, которые используются в электромонтаже практически на каждом шагу. Опытные специалисты утверждают, что шанс стать настоящим профессионалом своего дела может быть только у того электрика, которые досконально изучил и усвоил все общепринятые обозначения, используемые в проектной документации.
Приветствую всех друзья на сайте «Электрик в доме»
Сегодня я бы хотел уделить внимание одному из первоначальным вопросов, с которым сталкиваются все электрики перед монтажом — это проектная документация объекта
Кто то составляет ее сам, кому то предоставляет заказчик. Среди множества этой документации можно встретить экземпляры, в которых встречаются различия между условными обозначениями тех или иных элементов. Например в разных проектах один и тот же коммутационный аппарат графически может отображаться по разному. Встречалось такое?
Каждый начинающий мастер обязан внимательно ознакомиться с общепринятыми ГОСТами и правилами маркировки электрических элементов и оборудования на план-схемах и чертежах.
Многие пользователи могут со мной не согласится, аргументируя это тем, что зачем мне знать ГОСТ, я всего лишь занимаюсь установкой розеток и выключателей в квартирах.
Схемы должны знать инженера проектировщики и профессора в университетах.
Уверяю вас это не так. Любой уважающий себя специалист обязан не только понимать и уметь читать электрические схемы, но и должен знать, как графически отображаются на схемах различные коммуникационные аппараты, защитные устройства, приборы учета, розетки и выключатели. В общем, активно применять проектную документацию в своей повседневной работе.
Обозначение узо на однолинейной схеме
Основные группы обозначений УЗО (графические и буквенные) используются электромонтерами очень часто. Работа по составлению рабочих схем, графиков и планов требует очень большой внимательности и аккуратности, так как одно-единственное неточное указание или пометка могу привести к серьезной ошибке в дальнейшей работе и стать причиной выхода из строя дорогостоящего оборудования.
Кроме того, неверные данные могут ввести в заблуждение сторонних специалистов, привлеченных для электромонтажа и стать причиной возникновения сложностей при монтаже электрических коммуникаций.
В настоящее время любое обозначение узо на схеме может быть представлено двумя способами: графическим и буквенным.
На какие нормативные документы следует ссылаться?
Из основных документов для электрических схем, которые ссылаются на графическое и буквенное обозначение коммутационных устройств можно выделить следующие:
- — ГОСТ 2.755-87 ЕСКД «Обозначения условные графические в электрических схемах устройства коммутационные и контактные соединения»;
Виды схем в электрике
Для составления и чтения различных схем обычно требуются разные элементы. Типов схем есть много, но в электрике обычно используются:
- Функциональные, на которых отображаются основные узлы устройства, без детализации. Внешне выглядит как набор прямоугольников с проложенными между ними связями. Дает общее представление о функционировании объекта.
На функциональной схеме указаны блоки и связи между ними
Принципиальная схема детализирует устройство
На монтажной отображается местоположение и прохождение кабелей/линий связи
Есть еще много других видов электрических схем, но в домашней практике они не используются. Исключение — трасса прохождения кабелей по участку, подвод электричества к дому. Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема.
Графические обозначения в электрических схемах
В части графических обозначений в электрических схемах ГОСТ 2.702-2011 ссылается на три других ГОСТ:
- ГОСТ 2.709-89 «ЕСКД. Обозначения условные проводов и контактных соединений электрических элементов, оборудования и участков цепей в электрических схемах».
- ГОСТ 2.721-74 «ЕСКД. Обозначения условные графические в схемах. Обозначения общего применения»
- ГОСТ 2.755-87 «ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения».
Условные графические обозначения (УГО) автоматов, рубильников, контакторов, тепловых реле и прочего коммутационного оборудования, которое используется в однолинейных схемах электрических щитов, определены в ГОСТ 2.755-87.
Однако, обозначение УЗО и дифавтоматов в ГОСТ отсутствует. Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено. А пока, каждый проектировщик изображает УЗО по собственному вкусу, тем более, что ГОСТ 2.702-2011 это предусматривает. Достаточно привести обозначение УГО и его расшифровку в пояснениях к схеме.
Дополнительно к ГОСТ 2.755-87 для полноты схемы понадобится использование изображений из ГОСТ 2.721-74 (в основном для вторичных цепей).
Все обозначения коммутационных аппаратов построены на четырех базовых изображениях:
с использованием девяти функциональных признаков:
Наименование | Изображение |
1. Функция контактора | |
2. Функция выключателя | |
3. Функция разъединителя | |
4. Функция выключателя-разъединителя | |
5. Автоматическое срабатывание | |
6. Функция путевого или концевого выключателя | |
7. Самовозврат | |
8. Отсутствие самовозврата | |
9. Дугогашение | |
Примечание: Обозначения, приведенные в пп. 1 — 4, 7 — 9, помещают на неподвижных контактах, а обозначения в пп. 5 и 6 — на подвижных контактах. |
Основные условные графические обозначения, используемые в однолинейных схемах электрических щитов:
Наименование | Изображение |
Автоматический выключатель (автомат) | |
Выключатель нагрузки (рубильник) | |
Контакт контактора | |
Тепловое реле | |
УЗО | |
Дифференциальный автомат | |
Предохранитель | |
Автоматический выключатель для защиты двигателя (автомат со встроенным тепловым реле) | |
Выключатель нагрузки с предохранителем (рубильник с предохранителем) | |
Трансформатор тока | |
Трансформатор напряжения | |
Счетчик электрической энергии | |
Частотный преобразователь | |
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления автоматически | |
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством вторичного нажатия кнопки | |
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством вытягивания кнопки | |
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством отдельного привода (например, нажатия кнопки-сброс) | |
Контакт замыкающий с замедлением, действующим при срабатывании | |
Контакт замыкающий с замедлением, действующим при возврате | |
Контакт замыкающий с замедлением, действующим при срабатывании и возврате | |
Контакт размыкающий с замедлением, действующим при срабатывании | |
Контакт размыкающий с замедлением, действующим при возврате | |
Контакт замыкающий с замедлением, действующим при срабатывании и возврате | |
Катушка контактора, общее обозначение катушки реле | |
Катушка импульсного реле | |
Катушка фотореле | |
Катушка реле времени | |
Мотор-привод | |
Лампа осветительная, световая индикация (лампочка) | |
Нагревательный элемент | |
Разъемное соединение (розетка):гнездоштырь | |
Разрядник | |
Ограничитель перенапряжения (ОПН), варистор | |
Разборное соединение (клемма) | |
Амперметр | |
Вольтметр | |
Ваттметр | |
Частотометр |
Обозначения проводов, шин в электрических щитах определяется ГОСТ 2.721-74.
Наименование | Изображение |
Линия электрической связи, провода, кабели, шины, линия групповой связи | |
Защитный проводник (PE) допускается изображать штрихпунктирной линией | |
Графическое разветвление (слияние) линий групповой связи | |
Пересечение линий электрической связи, линий групповой связи электрически не соединенных проводов, кабелей, шин, электрически не соединенных | |
Линия электрической связи с одним ответвлением | |
Линия электрической связи с двумя ответвлениями | |
Шина (если необходимо графически отделить от изображения линии электрической связи) | |
Ответвление шины | |
Шины, графически пересекающиеся и электрически не соединенные | |
Отводы (отпайки) от шины |
Графическое обозначение электроэнергетических объектов на схемах
Наименование объекта |
Обозначение объекта |
||
существующего |
проектируемого |
намечаемого |
|
Электростанция. Общее обозначение |
|||
Электростанция тепловая ТЭС. Общее обозначение, ГРЭС |
|||
Электростанция тепловая с выдачей тепловой энергии потребителю ТЭЦ |
|||
Электростанция гидравлическая. Общее обозначение |
|||
Электростанция атомная |
|||
Подстанция. Общее обозначение |
|||
Подстанция переменного тока 35 кВ |
|||
Подстанция переменного тока 110 кВ |
|||
Подстанция переменного тока 220 кВ |
|||
Подстанции переменного тока 500 кВ |
|||
Подстанции тяговые переменного тока |
|||
Подстанция тяговая постоянного тока |
|||
Линия электропередач. Общее обозначение |
|||
Линия электропередачи до 1 кВ |
|||
Линия электропередач свыше 1 кВ |
|||
Кабельная линия |
|||
Воздушная линия |
|||
Линия электропередач постоянного тока |
± 110 |
±110 |
±110 |
Конструктивные особенности, принцип действия и схема дифавтомата
Рассматривая обозначение устройства по ГОСТ, несложно выделить конструктивные элементы защитного аппарата.
К основным стоит отнести:
- Дифференциальный трансформатор;
- Группа расцепителей (тепловой и электромагнитный).
Каждый из элементов выполняет определенные задачи. Рассмотрим их подробнее.
Дифтрансформатор — устройство с несколькими обмотками, число которых напрямую зависит от количества полюсов.
В его задачу входит сравнение нагрузочных токов в каждом из проводников. В случае расхождения показателей появляется ток утечки, который направляется в пусковой орган.
Если параметр выше определенного уровня устройство отключает электрическую цепь посредством разделения силовых контактов дифавтомата.
Для проверки работоспособности предусмотрена специальная кнопка, чаще всего подписываемая, как «TEST». Она подключена через сопротивление, которое подключается двумя способами:
- Параллельно одной из существующих обмоток;
- Отдельной обмоткой на трансформатор.
После срабатывания кнопки пользователь искусственно формирует ток небаланса. Если дифавтомат исправен, он должен отключить цепь. В противном случае делаются выводы о неисправности аппарата.
Следующий элемент дифавтомата — электрический расцепитель. Конструктивно он имеет вид электрического магнита с сердечником.
Назначением элемента является воздействие на отключающий механизм. Срабатывание электромагнита происходит при увеличении нагрузочного тока выше установленного уровня.
Чаще всего это бывает при появлении КЗ в низковольтной сети. Особенность расцепителя заключается в срабатывании без выдержки времени. На отключение питания уходят доли секунды.
В отличие от электромагнитного, тепловой расцепитель защищает не от КЗ в цепи, а от перегрузок. В основе узла лежит биметаллическая пластинка, через которую протекает нагрузочный ток.
Если он выше допустимого значения (номинального тока дифавтомата), происходит постепенная деформация этого элемента. В определенный момент пластина из биметалла постепенно изгибается.
В определенный момент она воздействует на отключающий орган защитного устройства. Задержка времени теплового расцепителя зависит от тока и температуры в месте установки. Как правило, эта зависимость имеет прямо пропорциональный характер.
На кожухе дифавтомата прописывается нижний предел (указывается в мА). Кроме тока утечки, указывается и номинальный ток расцепителя. Более подробно о маркировке аппарата поговорим ниже.
Основные условно графические обозначения
Переходим к рассмотрению самих обозначений элементов, выполненных по межгосударственным стандартам. Запомнив самые основные и наиболее часто встречающиеся, понимание многих схем станет куда легче.
Базовые изображения
Ни один электронный прибор не обходится без наличия в его устройстве резисторов, катушек, конденсаторов, транзисторов, диодов, контактов и переключателей. Причем некоторые модели элементов, такие как катушки и конденсаторы, имеют весьма малые размеры, в зависимости от своего номинала, поэтому новичкам не стоит удивляться их повсеместному применению, а узнать и запомнить, как они изображаются на чертежах.
Так, например, согласно ГОСТам:
- резистор обозначается прямоугольником, размерами 4Х10мм;
- Конденсатор – двумя параллельными отрезками, расстояние между которыми 1,5мм;
- Катушки – дуговыми линиями, от 2 до 4, в зависимости от назначения;
- Диоды – треугольниками, к вершине которых проведена параллельная основанию линия. Образованная графикой «стрелка» указывает в каком направлении диод открыт, а каком закрыт;
- Транзисторы – окружность, диаметром 12мм, от которой исходят три линии или, по-другому, контакта. Стрелка внутри указывает на то, что данный вывод транзистора – эмиттер и к какому типу элемент относится (n-p-n или p-n-p);
- Приборы, такие как амперметр, ваттметр или вольтметр обозначаются так же окружностью, но с диаметром 10мм и общепринятой буквенной аббревиатурой PA, PW и PV соответственно;
- Контакты – разомкнутой линией, на одном конце которой проведен отрезок длиной 6мм под углом в 30°.
Линии проводок и токопроводов
Проводники на всех схемах изображаются, в основном, прямыми линиями, соединяющими элементы в нужной последовательности. Допускается нанесение данных над линией, для уточнения параметров подаваемого напряжения и тока на устройство в целом или на отдельную его часть. В таких случаях разрешается указывать:
- Вид тока (постоянный, переменный, импульсный);
- Значение напряжения;
- Материал;
- Способы прокладки проводки.
- Отметки и пр.
Также на самой линии проводников допустимо указывать насечками общее количество проводов, например, в кабеле. Точки, в местах пересечения двух или более проводников указывают на их соединение между собой, если отсутствуют, то провода никак не взаимодействуют друг с другом и просто пересекаются.
Выводы и полезное видео по теме
С какими трудностями можно столкнуться при подключении защитных устройств, вы узнаете из следующих видеороликов.
Тестирование двухуровневой селективной и неселективной схемы:
Внутреннее устройство дифавтомата:
Разбор различных схем подключения дифавтоматов (3 части):
Подключение защитного дифференциального автомата – процесс несложный. Главным условием быстрого монтажа является четкое соблюдение рекомендованных электрических схем. В этом случае самостоятельная установка защитных устройств удастся с первого раза, а сами АВДТ будут надежно служить долгие годы.
Хотите поделиться собственным опытом в подключении дифференциального автомата? Знаете тонкости установки прибора, не приведенные в статье? Пишите, пожалуйста, комментарии, задавайте вопросы, публикуйте фото в расположенном ниже блоке.