Критерии выбора выпрямителя напряжения для дома

Оглавление

Принцип работы выпрямителя

Структурная схема выпрямителя показана ниже:

Главною его частью является выпрямляющее устройство В, образованное из диодов, объединенных особым образом. Именно здесь и происходит преобразование переменного тока в пульсирующий постоянный. Переменное напряжение подается на выпрямляющее устройство через трансформатор Тр. В некоторых случаях трансформатора может и не быть (если напряжение силовой сети отвечает той, которая необходима для работы выпрямителя). Трансформатор(если он есть) в большинстве также имеет особенности в соединении его обмоток. Пульсирующий ток , как правило не является постоянным по величине в каждое мгновение времени, и когда необходимо иметь более сглаженное его значение, чем полученный после выпрямляющего устройства, применяют фильтры Ф. В случае необходимости выпрямитель дополняют стабилизатором напряжения  или тока Ст, который поддерживает их на постоянном уровне, если параметры силовой сети изменяется по разным причинам. Структурную схему завершает нагрузка Н, которая значительно влияет на работу всего устройства и поэтому считается составляющей частью всего преобразователя.

Собственно выпрямителем является та его часть, которая обведена на рисунке выше пунктиром и состоит из трансформатора и выпрямительного устройства.

В этом подразделе рассматриваются  выпрямители малой мощности, которые необходимы для обеспечения постоянным напряжением всяких устройств в областях управления, регулирования, усилителях тока, генераторах малой мощности и так далее. Как правило, они питаются от однофазного переменного напряжения 220 или 380 В частотою 50 Гц.

Новое на alldoma.ru

В промзоне района Хорошево-Мневники построят новый жилой квартал!

Промышленную зону в районе Хорошево-Мневники на северо-западе столицы реорганизуют и благоустроят, сообщил главный архитектор Москвы Сергей Кузнецов.

Подробнее…

«Главстрой Санкт-Петербург» предлагает приобрести жилье комфорт-класса в ипотеку по ставке всего 0,5% годовых!

«Главстрой Санкт-Петербург» первым из застройщиков, базирующихся в Северной столице, предлагает в текущих условиях специальную ипотечную программу со ставкой 0,5% годовых на первый год.

Подробнее…

WE KNOW – новое имя !

Один из лидеров в сфере риелторских и консалтинговых услуг на рынке жилой недвижимости столицы официально объявил о начале работы под новым брендом. Теперь официально переименована в WE KNOW. Она больше не является частью консалтинговой компании S.A. Ricci и никак от нее не зависит.

Подробнее…

«Кортрос Live»: новый онлайн-формат общения с аудиторией ГК «Кортрос»!

Федеральный застройщик ГК «Кортрос» активно продвигает компанию и свои проекты, используя онлайн формат корпоративного YouTube канала. В рамках этого проекта топ-менеджеры и сотрудники компании рассказывают в прямом эфире о новостях группы, о преимуществах объектов ГК «Кортрос», специфике онлайн-сделок и отвечают клиентам на все интересующие вопросы.

Подробнее…

«Садовые кварталы» стали самым продаваемым элитным проектом 2020 года! Эксперты компании Est-a-Tet подвели итоги 2020 года на рынке элитных столичных новостроек и пришли к выводу, что жилой комплекс «Садовые кварталы», реализуемый в Хамовниках, стал самым востребованным проектом данного сегмента – в прошлом году в нем было продано более 17 тыс. кв. м жилья. Подробнее…

Однополупериодный выпрямитель.

Схема однополупериодного выпрямителя выглядит следующим образом:

Пусть на входе у нас переменное напряжение, меняющееся по синусоидальному закону:

Резистор же R_н играет роль нагрузки. То есть мы должны обеспечить протекание через него постоянного тока. Давайте разберемся как эта простейшая схема сможет решить нашу задачу!

Итак, диод D_1 пропускает ток только в одном направлении, в те моменты, когда к нему приложено прямое смещение, что соответствует положительным полупериодам (U_{вх}\gt0) входного сигнала. Когда к диоду будет приложено обратное смещение (отрицательные полупериоды), он будет закрыт и по цепи будет протекать только незначительный обратный ток. И в результате сигнал на нагрузке будет выглядеть так:

Обратным током обычно можно пренебречь, поэтому в итоге мы получаем, что ток через нагрузку протекает только в одном направлении. Но назвать его постоянным не представляется возможным Ток через нагрузку хоть и является выпрямленным (протекает только в одном направлении), но носит пульсирующий характер.

Для сглаживания этих пульсаций в схему выпрямителя тока обычно добавляется конденсатор:

Идея заключается в том, что во время положительного полупериода, конденсатор заряжается (запасает энергию). А во время отрицательного полупериода конденсатор, напротив, разряжается (отдает энергию в нагрузку).

Таким образом, за счет накопленной энергии конденсатор обеспечивает протекание тока через нагрузку и в отрицательные полупериоды входного сигнала. При этом емкость конденсатора должна быть достаточной для того, чтобы он не успевал разряжаться за время, равное половине периода.

Проверяем напряжение на нагрузке для этой схемы:

В точке 1 конденсатор заряжен до напряжения U_1. Далее входное напряжение понижается, а конденсатор, в свою очередь, начинает разряжаться на нагрузку. Поэтому выходное напряжение не падает до нуля вслед за входным.

В точке 2 конденсатор успел разрядиться до напряжения U_2. В то же время значение входного сигнала также становится равным этой же величине, поэтому конденсатор снова начинает заряжаться. И эти процессы в дальнейшем циклически повторяются.

А теперь поэкспериментируем и используем в схеме однополупериодного выпрямителя конденсатор меньшей емкости:

И здесь мы видим, что конденсатор из-за меньшей емкости успевает разрядиться гораздо сильнее, и это приводит к увеличению пульсаций, а следовательно к ухудшению работы всей схемы.

На промышленных частотах 50 – 60 Гц однополупериодный выпрямитель практически не применяется из-за того, что для таких частот потребуются конденсаторы с очень большой емкостью (а значит и внушительными габаритами).

Смотрите сами, чем ниже частота, тем больше период сигнала (а вместе с тем, и длительности положительного и отрицательного полупериодов). А чем больше длительность отрицательного полупериода, тем дольше конденсатор должен быть способен разряжаться на нагрузку. А это уже требует большей емкости.

Таким образом, на более низких частотах в силу своих ограничений эта схема не нашла широкого применения. Однако, на частотах в несколько десятков КГц однополупериодный выпрямитель используется вполне успешно.

Рассмотрим преимущества и недостатки однополупериодного выпрямителя:

  • К основным достоинствам схемы, в первую очередь, конечно же, можно отнести простоту и, соответственно, небольшую себестоимость – используется всего один диод.
  • Кроме того, снижено падение напряжения. , при протекании тока через диод на нем самом падает определенное напряжение. По сравнению с мостовой схемой (которую мы разберем в следующей статье), ток протекает только через один диод (а не через два), а значит и падение напряжения меньше.

Основных недостатков также можно выделить несколько:

  • Схема использует энергию только положительного полупериода входного сигнала. То есть половина полезной энергии, которую также можно было бы использовать, уходит просто в никуда. В связи с этим КПД выпрямителя крайне низок.
  • И даже с использованием сглаживающих конденсаторов величина пульсаций довольно-таки значительна, что также является очень серьезным недостатком.

Итак, давайте резюмируем! Мы разобрали схему и принцип работы однофазного однополупериодного выпрямителя тока, а в следующей статье перейдем к более сложным схемам выпрямителей, не пропустите!

Устройство и принцип работы

Устройство сварочного выпрямителя включает в себя несколько блоков, обеспечивающих выполнение рабочего процесса. Основные элементы агрегата следующие:

  • понижающий трансформатор;
  • диоды;
  • охлаждающий модуль;
  • измерительные приборы;
  • регуляторы тока.

Принцип работы выпрямителя заключается в подаче перемененного тока на первичную обмотку понижающего трансформатора. За счет электромагнитной индукции на вторичной обмотке создается поток напряжения с уменьшенным значением V, и возросшей силой тока А. Холостой ход работы аппарата не должен превышать 48V.

Это напряжение поступает на диоды. В качестве последних используются кремниевые элементы. Диод является полупроводником, обеспечивающим прохождение тока только в одну сторону. Это устраняет колебание его частоты и в зону сварки подается уже постоянное напряжение.

Поскольку диоды при этом нагреваются, то рядом с ними располагаются радиаторы и вентилятор. Постоянный обдув холодным воздухом позволяет увеличить продолжительность активной работы устройства, без перерыва на охлаждение. Для контроля характеристик тока в систему устанавливаются амперметр и вольтметр. Многие модели снабжаются датчиком перегрева. При превышении показателей V срабатывает блок защиты, отключающий возможность сварки. Чтобы настраивать силу тока в соответствии с толщиной свариваемого соединения используется несколько видов регулировки.

Описание выпрямителей


Трехфазный мостовой выпрямитель

Основное отличие устройств от своих однофазных аналогов проявляется в следующем:

  • первые устанавливаются в линиях 220 Вольт и служат для получения постоянных токов незначительной величины (до 50-ти Ампер);
  • трехфазные выпрямители используются в цепях, где рабочие (выпрямленные) токи существенно превышают этот показатель и достигают нескольких сотен Ампер.
  • в сравнении с однофазными образцами эти приборы имеют более сложное устройство.

Известны схемы выпрямления трехфазного напряжения, позволяющие получить на выходе минимальный уровень пульсаций.

В электротехнике они называются «трехфазные мостовые выпрямители», так как по способу открывания диодов, управляемых полярностью напряжения, они напоминают мост через реку с односторонним движением. Только направление потока электронов в них чередуется с частотой 50 Гц, недоступной для проезда машин поочередно в каждую из сторон.

Что такое сварочный выпрямитель

Устройство является преобразовательным блоком с возможностью регулировки силы тока (ампераж) и напряжения (вольтаж). На выходе сварочного выпрямителя есть провода с клеммами – плюсовой и минусовой. Один из них подключается к электроду, а другой контактирует с заготовкой. В результате замыкания цепи образуется электрическая дуга. Ее высокая температура позволяет расплавлять металлы и сваривать их.

В зависимости от назначения выпрямители отличаются уровнем сложности и функционалом. Тем не менее, принципиальная рабочая схема остается типовой. Его основу составляет преобразователь – трансформатор, модулирующий нужное для конкретной ситуации напряжение. Помимо этого, в схеме есть определенное количество полупроводников, которые отсекают отрицательную часть синусоиды переменного тока, пропуская только положительный заряд.

https://youtube.com/watch?v=G84TO5pbHiA

Полупроводниковые схемы

Любой выпрямитель — это схема. Она включает в себя вторичную обмотку трансформатора, выпрямляющий элемент, электрический фильтр и нагрузку. При этом существует возможность получать умножение напряжения. Выпрямленное напряжение — это сумма постоянного и переменного напряжений. Переменная составляющая — это нежелательная компонента, которую уменьшают тем или иным способом. Но поскольку используются полуволны переменного напряжения, иначе быть не может.

Его можно уменьшить двумя способами:

  • улучшая эффективность электрического фильтра;
  • улучшая параметры выпрямляемого переменного напряжения.

Простейший выпрямитель однополупериодный. Он отсекает одну из полуволн переменного напряжения. Поэтому коэффициент пульсаций в такой схеме получается самым большим. Но если выпрямляется трехфазное напряжение с одним диодом в каждой фазе, а также одним и тем же фильтром, получится в три раза меньший коэффициент пульсаций. Однако наилучшими характеристиками обладают двухполупериодные выпрямители.

Использовать обе полуволны переменного напряжения можно двумя способами:

  • по схеме моста;
  • по схеме со средней точкой обмотки (схема Миткевича).

Сравним обе эти схемы для одного и того же значения выпрямленного напряжения. В схеме моста используется меньше витков вторичной обмотки трансформатора, что является преимуществом. Но при этом в однофазном выпрямительном мосте необходимы четыре диода. В схеме со средней точкой необходимо в два раза больше витков вторичной обмотки со средней точкой, что является недостатком. Еще один недостаток этой схемы — необходимость симметрии частей обмотки относительно средней точки.


Схема устройства стабилизатора напряжения

Асимметрия будет дополнительным источником пульсаций. Но зато в этой схеме нужны только два диода, что является преимуществом. При выпрямлении на диоде существует напряжение. Его величина почти не изменяется в зависимости от силы тока, протекающего через этот диод. Поэтому мощность, рассеиваемая на полупроводниковом диоде, растет по мере увеличения силы выпрямленного тока.

Это весьма ощутимо при большой силе тока, и поэтому полупроводниковые диоды размещаются на охлаждающих радиаторах и при необходимости обдуваются.

При выпрямлении тока большой силы два диода схемы со средней точкой будут экономичнее и компактнее в сравнении с четырьмя диодами выпрямительного моста. Схемы выпрямителей в свое время не появились из ниоткуда. Их изобрели инженеры. Поэтому схемы выпрямителей в литературе иногда называются в связи с именами своих первооткрывателей. Мостовая схема именуется как «полный мост Гретца». Схема со средней точкой — «выпрямитель Миткевича».

Будет интересно Что такое заземление простыми словами

Силовой трансформатор

Это устройство предназначено для согласования напряжений на входе и выходе выпрямительного устройства. Другими словами, трансформатор осуществляет разделение сети нагрузки и сети питания. Существуют всевозможные варианты схем соединения обмоток этого трансформатора, выбор которых зависит от типа схемы выпрямления устройством. На величину выходного напряжения трансформатораU2 влияет величина напряжения на выходе выпрямительного моста Uн.

Трансформатор способен выполнить гальваническую развязку частоты f1 с сетью питания U1, I1, и нагрузочную цепь с Uн, Iнодновременно. В настоящее время появилась возможность проектировать и производить инверторы высокого напряжения, функционирующие на повышенной частоте и выпрямляющие напряжение. Для этого применяются схемы бестрансформаторного выпрямления, в которых блок вентилей подключается сразу к первичной сети питания.


Силовой трансформатор

Диодный мост

Этот блок выполняет основную функцию в устройстве выпрямителя, преобразуя переменный ток в постоянный. В блоке применяются чаще всего элементы в виде диодов. На выходе блока вентилей снимается постоянное напряжение, имеющее повышенный уровень импульсов, который зависит от числа фаз сети питания и схемой выпрямителя.


Диодный мост

Устройство фильтрования

Фильтрующая часть выпрямителя обеспечивает необходимый уровень пульсаций напряжения на выходе выпрямителя в соответствии с предъявляемыми требованиями нагрузки. В схеме фильтрующего устройства применяются сглаживающий дроссель или сопротивление, подключенные последовательно, и конденсаторы, подключенные параллельно выходу питания.

Однако чаще всего фильтры выполняют по схемам несколько сложнее. В маломощных выпрямителях нет необходимости в применении дросселя и резистора. В схемах выпрямителей для трехфазной сети величина импульсов меньше, тем самым становятся легче условия функционирования фильтра.

Механическое выпрямление напряжения

Определение выпрямления означает получение однонаправленного электрического тока. Его величина при этом будет зависеть от формы переменного напряжения в каждом полупериоде. Но однонаправленный электрический ток при этом получается, как при положительном полупериоде напряжения, так и при его отрицательном значении. При этом нагрузка при переходе напряжения через ноль должна отключаться от ненужной полуволны напряжения. Первые выпрямители выполняли эту задачу механическими контактами.

Они либо приводились в движение синхронным двигателем, либо перемещались достаточно быстродействующим соленоидом. В обеих схемах контакты, переключающие напряжение, перемещаются синхронно с напряжением. В схеме с двигателем они вращаются, замыкаясь в нужный момент времени. Узел, предназначенный для выпрямления напряжения, при вращении аналогичен коллектору двигателя постоянного тока. Количество ламелей – контактов определяется числом оборотов синхронного двигателя.

Схема получения повышенного напряжения.

При переходе синусоиды выпрямляемого напряжения через ноль обе щетки контактируют либо с началом, либо с концом ламели. Начало ламели совпадает с острием стрелки, указывающей направление вращения двигателя. Время контакта щеток с ламелью совпадает с длительностью половины периода выпрямляемого напряжения.

Синхронный двигатель вращается точно и кратно частоте питающего напряжения, которое он выпрямляет присоединенным к нему коллектором. Но его инерционность не позволит выпрямить скачкообразное изменение частоты питающего напряжения. Поэтому он эффективен только как выпрямитель напряжения электросети.

Таблица параметров популярных моделей выпрямителей напряжения с фото.

Выпрямитель на соленоиде замыкает контакт либо на время, когда сердечник втягивается, либо наоборот. Он может сработать только при некотором минимальном напряжении, которое достаточно для перемещения контактов. Поэтому часть полуволны вблизи перехода напряжения через ноль не будет обработана как следует.

Но зато такой выпрямитель может быть изготовлен довольно-таки небольшим. Поэтому он был широко распространен в свое время. Очевидно то, что без коммутации электрической цепи выпрямления напряжения не может быть. А возможности механического контакта ограничены мощностью искры, которая возникает в момент разрыва электрической цепи. Она постепенно уничтожает этот контакт тем быстрее, чем больше электрическая мощность при его размыкании.

Выбор выпрямителя по типу регулирования сварочного тока в выпрямителях

Виды регулирования сварочного тока:

  • Электромеханическое витковое. При этом способе ток приобретает нужное значение перед выпрямительным блоком. Простыми и надежными в эксплуатации являются выпрямители с трансформаторами, которые оснащены секционированными обмотками высшего напряжения. Эти обмотки последовательно включаются переключателем, вызывая ступенчатое изменение величины тока во вторичной цепи трансформатора. Обычно их применяют для полуавтоматической сварки в среде защитных газов.
  • Электромеханическое с помощью вольтодобавочных трансформаторов. Они подключаются в одном или противоположном направлении со вторичными обмотками трансформатора.
  • Тиристорное. Распространенный вариант – регулирование с помощью тиристоров, которые часто называют управляемым полупроводниковым вентилем. Управление сварочным током осуществляется вариацией времени открытия тиристоров. Такое плавное регулирование может осуществляться дистанционно. Получаемая в этом случае дуга отличается высокой стабильностью.
  • Магнитное. Осуществляется в выпрямителе, оснащенным трансформатором с магнитной коммутацией или дросселем насыщения.
  • Импульсное. Широтное, частотное и амплитудное. Реализовано в моделях с транзисторным регулятором.

Применение диодов

Не следует думать, что диоды применяются лишь как выпрямительные и детекторные приборы. Кроме этого можно выделить еще множество их профессий. ВАХ диодов позволяет использовать их там, где требуется нелинейная обработка аналоговых сигналов. Это преобразователи частоты, логарифмические усилители, детекторы и другие устройства. Диоды в таких устройствах используются либо непосредственно как преобразователь, либо формируют характеристики устройства, будучи включенными в цепь обратной связи. Широкое применение диоды находят в стабилизированных источниках питания, как источники опорного напряжения (стабилитроны), либо как коммутирующие элементы накопительной катушки индуктивности (импульсные стабилизаторы напряжения).


Выпрямительные диоды.

С помощью диодов очень просто создать ограничители сигнала: два диода включенные встречно – параллельно служат прекрасной защитой входа усилителя, например, микрофонного, от подачи повышенного уровня сигнала. Кроме перечисленных устройств диоды очень часто используются в коммутаторах сигналов, а также в логических устройствах. Достаточно вспомнить логические операции И, ИЛИ и их сочетания. Одной из разновидностей диодов являются светодиоды. Когда-то они применялись лишь как индикаторы в различных устройствах. Теперь они везде и повсюду от простейших фонариков до телевизоров с LED – подсветкой, не заметить их просто невозможно.

Будет интересно Что такое тиристоры?

Параметры диодов

Параметров у диодов достаточно много и они определяются функцией, которую те выполняют в конкретном устройстве. Например, в диодах, генерирующих СВЧ колебания, очень важным параметром является рабочая частота, а также та граничная частота, на которой происходит срыв генерации. А вот для выпрямительных диодов этот параметр совершенно не важен. Основные параметры выпрямительных диодов приведены в таблице ниже.


Таблица основных параметров выпрямительных диодов.

В импульсных и переключающих диодах важна скорость переключения и время восстановления, то есть скорость полного открытия и полного закрытия. В мощных силовых диодах важна рассеиваемая мощность. Для этого их монтируют на специальные радиаторы. А вот диоды, работающие в слаботочных устройствах, ни в каких радиаторах не нуждаются. Но есть параметры, которые считаются важными для всех типов диодов, перечислим их:

  • U пр.– допустимое напряжение на диоде при протекании через него тока в прямом направлении. Превышать это напряжение не стоит, так как это приведёт к его порче.
  • U обр.– допустимое напряжение на диоде в закрытом состоянии. Его ещё называют напряжением пробоя. В закрытом состоянии, когда через p-n переход не протекает ток, на выводах образуется обратное напряжение. Если оно превысит допустимое значение, то это приведёт к физическому «пробою» p-n перехода. В результате диод превратиться в обычный проводник (сгорит).

Очень чувствительны к превышению обратного напряжения диоды Шоттки, которые очень часто выходят из строя по этой причине.

Обычные диоды, например, выпрямительные кремниевые более устойчивы к превышению обратного напряжения. При незначительном его превышении они переходят в режим обратимого пробоя. Если кристалл диода не успевает перегреться из-за чрезмерного выделения тепла, то изделие может работать ещё долгое время.

  • I пр.– прямой ток диода. Это очень важный параметр, который стоит учитывать при замене диодов аналогами или при конструировании самодельных устройств. Величина прямого тока для разных модификаций может достигать величин десятков и сотен ампер. Особо мощные диоды устанавливают на радиатор для отвода тепла, который образуется из-за теплового действия тока. P-N переход в прямом включении также обладает небольшим сопротивлением. На небольших рабочих токах его действие не заметно, но вот при токах в единицы-десятки ампер кристалл диода ощутимо нагревается. Так, например, выпрямительный диодный мост в сварочном инверторном аппарате обязательно устанавливают на радиатор.
  • I обр.– обратный ток диода. Обратный ток – это так называемый ток неосновных носителей. Он образуется, когда диод закрыт. Величина обратного тока очень мала и его в подавляющем числе случаев не учитывают.
  • U стаб.– напряжение стабилизации (для стабилитронов). Подробнее об этом параметре читайте в статье про стабилитрон.

Будет интересно Что такое NTC термисторы

Кроме того следует иметь в виду, что все эти параметры в технической литературе печатаются и со значком “max”. Здесь указывается предельно допустимое значение данного параметра. Поэтому подбирая тип диода для вашей конструкции необходимо рассчитывать именно на максимально допустимые величины.


Диоды высокого тока.